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Session 1. Optical forces in the dipolar system 
A chiral particle whose dimensions are significantly smaller than the spatial change of the 

surrounding harmonic electromagnetic (EM) field can be described as a pair of interacting 

electric and magnetic  dipolar moments, in which the Re[ ( ) ]  i tp r e Re[ ( ) ] i tM m r e

chiral particle subjected to the monochromatic EM-field generates the moments of and p

associate with both the local electric and magnetic fields at the target particle that are m E H

expressed as [77] 
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where and  are the permittivity and permeability of the surrounding media, respectively, d d

electric α, magnetic β, and mixed electric-magnetic χ dipole polarizabilities are complex scalars. 

Notably, the sign (+, -) of χ polarizability is closely related to the handedness of enantiomers. 

It should be noted that the α and β polarizabilities are always the same during enantiomeric 

variations as they are quadratic forms of the electric and magnetic dipoles, respectively [13,77]. 

Therefore, one of our purposes is to discriminate the effect of the sign change of χ on the optical 

forces for the chiral dipoles. For a nanosphere, the polarizabilities of α, β and χ can be directly 

shown as [6], 
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and  are the relative permittivity and permeability with respect to the /  r d /  r d

surrounding media, (ε, μ) gives the refractive index n of the nanosphere, κ determines the 

chirality of the sphere that links to the effective refractive index difference n± = n ± κ between 

left (-) and right (+) handed circularly polarized waves, and it measures the level of handedness 

of chiral molecules. The imaginary ( ) and real parts ( ) of κ are related to the chiral Im( ) Re( )

response and optical rotation, respectively. R is the radius of the nanoparticle. A detailed 

derivation of polarizabilities (Eqs.(s2)-(s4)) can be found in the Appendix of Ref.[6]. 

The time-averaged optical force exerted on a chiral particle can be expressed from the F

Lorentz force law [13,77],

                                         (s5)   * * * *
d

1 Re
2 diωμ iωε         F p E m H p H m E

It should be pointed out that, herein we do not consider the terms stemming from self-

interactions of the dipole that plays a role in producing the recoil force. The can then be F

presented as a sum of a non-chiral ( ) and chiral gradient forces ( ) associated with (α, β) , F F

and polarizabilities, respectively.  

                                                                                                                   (s6),   F F F

By placing the dipolar moments ( , ) shown in Eq. (s1) into Eq. (s5), the  and can p m , F F

be both divided into reactive and dissipative constituents, respectively, which consist of the real 

and imaginary parts of the α, β, and  polarizabilities:
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is the chirality density of the field and  is the flow of chirality. The flow 2

Im
=

2
K

c
  

*E H


of the chirality is determined by the electric and magnetic field ellipticities:
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Session 2. Fano formula fitting to the transmittance spectrum simulated 

through FDTD method

In Fig.S1(a), the Fano formula is expressed as [44], 
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function and flat continuous background. By considering the amplification factor ( ) and nF
displacement ( ) of Fano formula along the longitudinal axis, Eq.(s12) is rewritten as,mA
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where , Γn the width of the autoionized state, ωn the resonant frequency of Pn mode,
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the phenomenological shape parameters, and  the constant factors.In Fig. S1(b)-(c), nq mA nF

we fit the transmittance of both the symmetric double split-ring resonator (SDSRR) and 

asymmetric double split-ring resonator (ADSRR) using the single FR lineshape in Eq. (s14) 

[43,44] and double FR lineshape in Eq.(s15) [s1], respectively,
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. With the parameters shown in Table S1, the 3
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calculated transmittances using Eqs. (s14) and (s15) approximately reproduce the transmittance 

simulated by the finite difference time domain (FDTD) method. 
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Discrete state Mixing Continuum Fano resonance
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Fig.S1. (a) Demonstration of Fano lineshape as a superposition of the Lorentzian line shape of the discrete 
level with a flat continuous background. (b) FDTD simulation of the transmittance spectrum (red solid) of 
SDSRR and best-fits to the Fano lineshape using Eq.(s14) (blue dot). (c) FDTD simulation of the 
transmittance spectrum (red solid) of ADSRR and best-fits to the Fano lineshape using Eq.(s15) (blue dot).

Table S1: Fano formula fitted parameters of the transmittances for the different double split-
ring resonators.

Mode ωn Γn nq Qn

P3 360.8THz 26.9THz -0.3957 13

P4 388.3THz 11.76THz 0.173 33

P5 351.5THz 23.3THz -0.0381 15

[s1] Y. Ma, Z. Li, Y. Yang, R. Huang, R. Singh, S. Zhang, J. Gu, Z. Tian, J. Han, and W. Zhang, Opt. 
Mater. Express, 2011, 1, 391–399.
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Session 3. The effect of structure’s geometry on the lateral forces for the 

enantiomers in the air.
To understand the effect of structure’s geometry on the lateral force, we calculate the spectra 

of the  (left column) and  (right column) exerted on the chiral nanoparticles placed 10 nm xF yF

above ADSRR by varying w from 25 nm to 40 nm with the fixed parameters of α =100, 

β1=1700,β2= 1400 (Fig. S2(a)), varying α from 50 to 200 with the fixed parameters of w =30 nm, 

β1=1700,β2= 1400 (Fig. S2(b)), and varying β1/β2 from 1.1 to 1.4 with the fixed parameters of α 

=100 and w =30 nm (Fig. S2(c)). As can be seen, the two total lateral forces ( and ) present xF yF

the most pronounced change by the enantiomeric pair with the parameters of w =30 nm, α =100, 

β1=1700,β2= 1400. In Fig. S2(d), we calculate the spectra of  (left column) and  (right xF yF

column) by changing the gap between the two nested SRRs. Mainly, we vary the Ri from 150 

nm to 165 nm while fixing the other parameters. It shows that the total lateral forces become 

more significant as increasing Ri (namely reducing the gap). This is because the proximity 

between the inner and outer SRRs leads to mode hybridization and the stronger resonances, 

which can offer substantial field gradient in the x-y plane [2,11, 42]. The best performance of 

the lateral forces variations is with Ri =165 nm corresponding to the gap width of 15 nm, 

whereas this is smaller than the diameter of the chiral particles (d =20 nm). To match the size 

of the chiral particles while maintaining a significant enhancement of the lateral force, herein 

we choose the width of a plasmonic gap as 20 nm. 
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Fig. S2. Spectra of the lateral optical forces exerted on the enantiomers placed 10 nm above the ADSRR with 
(a) w from 25 nm to 40 nm, α =100, β1=1700,β2= 1400, (b) α from 50 to 200, w =30 nm, β1=1700,β2= 1400, (c) 
β1/β2 from 1.1 to 1.4, α =100 , w =30 nm, (d) Ri from 150 nm to 165 nm, R0 = 210 nm, α =100 , w =30 nm, 
β1= 1700, β2= 1400.The total lateral forces along both the x- and y-axes are shown in the left- and right- 
columns, respectively. 

In Fig. S3(a), we present a comparison of transmittances between the square SDSRR (solid 

blue line) and square ADSRR (solid red line). Our results show that the P6 mode at λ=830 nm 

can be split into two distinct resonance modes at λ = 768 (denoted as P7) and 861 nm (indicated 

as P8) by breaking the symmetry of the inner square SRR. In Fig. S3(b), a ratio of K/KCPL is 

calculated to evaluate the enhancement of optical chirality intensity for both the square SDSRR 

and square ADSRR. As can be seen, the distributions of K/KCPL in the square DSRR follow the 



S7

similar trend as the K/KCPL in the circular DSRR (Fig.2). The geometries of the square DSRRs 

are determined from the circular DSRRs.

Fig.S3. (a) A comparison of the transmittances between the square SDSSR and square ADSRR, where Li = 
320 nm, L0 = 420 nm, α =100, β=250, β1=1800,β2= 1300, w=30 nm, and T= 30 nm. (b) Enhancements of the 
optical chirality intensity K/KCPL at λ= 830nm (P6 mode, left column), λ = 768 nm (P7 mode, central column), 
and λ = 861 nm (P8 mode, right column).

Session 4. Trapping potentials for the enantiomers with the 250 mW LCP 

incidence in air.
To compensate for the delocalization and prevent the nanoparticle from escaping, the trapping 

confinement needs to satisfy UB > 10 kBT by either further focusing the trapping laser beam or 

by increasing the local laser intensity on the specimen [41,79]. Figure S4 depicts UB of the 

paired enantiomers by increasing LCP light power to 250 mW. Figure S4(a) presents 2D UB on 

the right-handed chiral particle (R =10 nm, κ=+1) placed 10 nm above the plasmonic aperture. 

Figure S4(b) demonstrates the same UB on the left-handed chiral specimen (R=10 nm, κ=-1). 

Figure S4(c) shows 1D UB along the diagonal direction across the plasmonic aperture (α plane 

in Fig. S4(a)-(b)) for the enantiomeric pair. With the LCP illumination, the same gap offers UB 

as deep as −14 kBT for the right-handed enantiomer, while for the left-hand specimen the UB is 

positive (UB = +13 kBT ) at the same position. The significant variations in the sign and 

magnitude of optical forces for the enantiomeric pair lead to a drastic difference in their UB. 



S8

Such a distinct UB stably captures the right-handed enantiomer around the aperture, while acting 

as a potential barrier to repel the left-handed enantiomer. By just switching the incidence 

polarization to right circularly polarization (RCP), we may trap the other handedness. Then the 

same trapping potential (UB=−14kBT) for the right-handed enantiomer could apply to the left-

handed enantiomer.
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Fig. S4. Trapping potentials for the paired enantiomers (R= 10 nm, κ = ±1) with 250 mW LCP incidence in 
air. 2D trapping potentials for (a) right-handed enantiomer and (b) left-handed enantiomer at 10 nm away 
from the aperture. (c) 1D trapping potentials across the diagonal direction of the aperture (α plane) for both 
right-handed (κ =+1, blue line) and left-handed (κ =-1, red line) enantiomers. The resonance wavelength is 
at λ= 774 nm (P4 mode)
Session 5. The effect of chirality parameter and incident power on the 

transverse forces for the enantiomers in the air.
So far, we take κ = ±1 as an example to illustrate the crucial role of the Fano resonance for the 

enhancement of the lateral chiral force. The same design can also obtain an enantioselection of 

chiral specimen with κ = ±0.7 (Fig. S5 (a)); moreover, herein the incident power is 25 mW that 

is much lower than 100mW employed in Ref. [2]. By enlarging the input power to 75 mW, a 

significant variation of the total transverse force by the enantiomeric pair with a smaller κ = 

±0.3 can be attained (left and central columns of Fig. S5(b)). These result in separations of the 

chiral particles with the opposite handedness for both of the situations. In the right column of 

Fig. S5, we show the dynamic simulation of the stability of sub-10 nm enantiomeric pairs by 

observing time sequences of the particles’ movements above the plasmonic aperture at λ=774 

nm (P4 mode). The chiral particles are tracked with “nm” accuracy in the x-y plane. The powers 

of LCP illumination are 25 mW and 75 mW for the chiral particles with κ = ±0.7 and ±0.3, 

respectively. A trajectory of the chiral nanoparticle with κ > 0 is shown by the blue line. On the 

contrary, the chiral nanoparticle with the opposite handedness (κ<0) follows the different 

direction of motion (indicated by the red line). 
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Fig. S5. The transverse total forces F acting on the paired enantiomers with R=10 nm for (a) κ=±0.7 under 
25 mW LCP light, and (b) κ=±0.3 under 75 mW LCP light. Left column: F with κ>0; central column: F 
with κ<0; right column: the stability of the enantiomeric pair, where the blue and red solid lines represent the 
0.1 ms trajectories of the chiral particles with κ>0 and κ<0, respectively. The particles are placed 10 nm 
above the aperture of the ADSRR. The white solid lines outline the structure's geometry, and the color and 
direction of the arrows represent the magnitude and direction of the forces, respectively. The resonance 
wavelength is at λ= 774 nm (P4 mode).
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Session 6. Optical separation of the paired enantiomers in water.
Figure S6 depicts the optical potentials (UB) of the paired enantiomers with a left circularly 

polarized (LCP) incidence, where the enantiomers are at 10 nm away from the surface of 

ADSRR in the water, the power of the LCP incidence is 700 mW, and the resonance wavelength 

is λ=774 nm (P4 mode). Figure S6(a) presents the two dimensional (2D) UB on the right-handed 

chiral particle (R=10 nm, κ=+1). Figure S6(b) demonstrates the same UB on the left-handed 

chiral specimen (R=10 nm, κ=-1). Figure S6(c) shows the one dimensional (1D) UB along the 

diagonal direction across the plasmonic aperture (α plane) for the enantiomeric pair. With the 

LCP illumination, the same aperture offers UB as deep as −11 kBT for the right-handed 

enantiomer, while for the left-hand specimen the UB is positive (UB=+11.5 kBT ) at the identical 

position. Such a distinct UB stably captures the right-handed enantiomer around the aperture, 

while acting as a potential barrier to repel the left-handed enantiomer. By just switching the 

incidence polarization to right circularly polarization (RCP), we may trap the other handedness. 

Then the same trapping potential (UB=−11 kBT) for the right-handed enantiomer could apply to 

the left-handed enantiomer.
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Fig. S6. Trapping potentials for the paired enantiomers (R= 10 nm) with 700 mW LCP incidence in water. 
2D trapping potentials for (a) right-handed enantiomer and (b) left-handed enantiomer at 10 nm above the 
nanoaperture. (c) 1D trapping potentials across the diagonal direction of the aperture (α plane) for both right-
handed (κ =+1, blue line) and left-handed (κ =-1, red line) enantiomers.


