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ADDITIONAL EXPERIMENTAL DETAILS

An FeF2(70nm)/Au(tAu)/Ni(30nm)/Al(2nm) wedge-shaped trilayer was fabricated by electron beam evaporation,
at a base pressure of 5× 10−7 Torr. FeF2 was deposited onto a MgF2 (110) single crystal at 300◦C. The temperature
was reduced to 150◦C for deposition of Au, Ni and the Al protecting layer. A shadow blade covered progressively
the sample during Au growth, in order to obtain the wedge-shaped Au layer, which varies in thickness from tAu = 0
to 13 nm. As a consequence a Au wedge with a slope ∆tAu = 0.5 nm/mm is obtained. A schematic representation
of the wedge-shaped trilayer is shown in Fig. (1). FeF2 grows epitaxially on MgF2 following the same (110) The
external magnetic field is always applied along the FM and AFM easy axis. Magneto-optical hysteresis loops are
scanned through the Au-wedge by a laser spot of 100 um. Therefore, proving an area with a thickness variation
around 0.05 nm orientation. This crystallographic plane exhibits a magnetically compensated spin structure in a bulk
single crystal.

FIG. 1: (color-online). FeF2(70nm)/Au(tAu)/Ni(30nm)/Al(2nm) wedge-shaped trilayer for 0 < tAu < 13 nm. The Au-wedge is
orthogonal to both the magnetic easy axes of the system, and the direction of the external field that is applied during cooling
and measurements.

THE MODEL

We assume that the largest number of domains imprinted on the AFM, which are responsible for EB, are created
during the field cooling process, and that they remain frozen over a large range of external magnetic fields. The spin
structure at the FM surface is determined by the the competion of the Zeeman and dipole energies. Let us consider
the case for intermediate field cooling, i.e. when the antiferromagnetic dipole coupling through the PM spacer is
compensated by the Zeeman energy. The FM/AFM domain interaction energy density Eint can then be written as
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Eint(θ1, θ2) = − KFM[cos2(β − θ1) + cos2(β − θ2)]

− MFMµ0[cos(θ1) + cos(θ2)]H + Edip,

(1)

where µ0 is the vacuum permeability, β is the angle between the applied field (H) direction and the anisotropy axis.
θ1 (θ2) is the angle between FM domain-1 (domain-2). KFM is the uniaxial anisotropy energy density and MFM is
the saturation magnetization of the FM. The dipole energy density is given by

Edip = −µ0

4π
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where, M
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where r
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Here, the average magnetic moment mAFM = µB
∑

r〈Szα(r) − Szβ(r)〉 6= 0, where r denotes a lattice site, and µB is
the Bohr magneton. When the cooling field is applied along the easy axis of the AFM, quantum fluctuations of the
frustrated spins break the balance between the two magnetic sublattices, and therefore |〈Szα(r)〉| 6= |〈Szβ(r)〉|, where
|〈Szα(r)〉|, and |〈Szβ(r)〉| are the average magnetic moments of the AFM sublattices. Defining two EB fields, namely,
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and, replacing Eqs. (3 – 5) into Eq. (2), one obtains

Eint(θ1, θ2) = − KFM[cos2(β − θ1) + cos2(β − θ2)]

− MFMµ0(H +H
(1)
EB) cos(θ1)

− MFMµ0(H −H(2)
EB) cos(θ2) . (6)

This way, the energy cost associated with the reversal of these additional magnetic fields generates double hysteresis
loops. To obtain the magnetization M we seek the solution of ∂Eint(θ1, θ2)/∂θ1 = 0 = ∂Eint(θ1, θ2)/∂θ2. Hence

M = Msat
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Magnetic domain size

The size of the FM domains can be estimated by using the model by Gaunt, which relates the magnetic viscosity
to the thermal activation energy of the reversal mode. For a single domain under an applied field H opposite to the
magnetization MFM, the activation energy is given by

EAct = KFMtFMr2FM(1− µ0HMFM/2KFM)2 , (8)
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Consequently, the thermal energy kBT activates a FM domain of size

rFM(H) =

√
kBT

KFMtFM

1
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. (9)

If we assume that, that due to the AFM dipole coupling, rAFM ∼ rFM, then from Eq. (9) r
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300Å. Since M
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where ρk = rFM(H = 0)/r
(k)
AFM is the ratio between FM domain-k and the respective AFM domain-k size. These

definitions of ρk are valid in the absence of field cooling and the dipolar interaction.

AFM average magnetic moment

The FeF2(110) AFM is modeled as a set of magnetically compensated planes parallel to the AFM/PM interface,
labeled by ` ≥ 0 (with ` = 0 specifying the interface layer) the AFM Hamiltonian is given by

HAFM = JAFM

∑
`,` ′

∑
R,R′

Sα(`,R) · Sβ(` ′,R′)

−gµBHFC

∑
`,R

(
(HFC +HFM

dip )Szα(`,R) + (HFC −HFM
dip )Szβ(`,R)

)

−KAFM

∑
`,R

(
(Szα(`,R))2 + (Szβ(`,R))2

)
, (12)

where JAFM is the AFM exchange interaction, R and R′ are the in-plane lattice vectors, and KAFM is the magnitude
of the uniaxial anisotropy along the in plane ẑ direction. The field cooling HFC is applied along ẑ, and the magnetic
dipole field Hdip = µ0mFM/(4πt

3
PM) (mFM is the FM average magnetic moment) created by the FM is applied along

−ẑ, and the double summation in the first term corresponds to the AFM intra and inter plane exchange interactions.
The Holstein-Primakoff transformations
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(13)

allow to recast the Hamiltonian of Eq. (12) in terms of elementary bosonic excitations created (destroyed) by the
operators a†, b† (a, b). We ignore magnon-magnon interactions and consequently quadratic and higher order terms
are neglected. Since there is in-plane translational symmetry the boson operators can be expanded in parallel to the
interface spin waves, which allows to decouple the Hamiltonian into a set of independent semi-infinite linear chains,
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with γk =
∑

η e
ik·η, η are the lattice vectors. Quantum fluctuations dynamics and symmetry breaking, can be

extracted from the Green functions, which are defined by
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, (16)

In terms of the dimensionless variables z = ω/JAFM, h = gµBHFC/JAFM, t = gµBHdip/JAFM, κ = KAFM/JAFM,

g
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`,`′ , the average magnetic moment can be written as
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Due to sub-lattice symmetry of compensated AFM (110) surface, one obtain gaa0,0(z, γk, h) = gbb0,0(z, γk,−h), thus
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Using the transfer matrix method, and the solution of the coupled Green function equations we obtain∑
k

gbb0,0(z, γk, h) ≈ 1
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this way
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