Electronic Supplementary Information

Plasmon-mediated cancer phototherapy: the combined effect of thermal and photodynamic

processes

Loredana Ricciardi^{*1}, Lucie Sancey², Giovanna Palermo³, Roberto Termine¹, Antonio De Luca^{1,3}, Elisabeta I. Szerb⁴, Iolinda Aiello^{1,5}, Mauro Ghedini^{1,5}, Giuseppe Strangi^{1,6,7} and Massimo La Deda^{*1,5}

¹ CNR NANOTEC- Institute of Nanotechnology U.O.S. Cosenza, 87036 Rende (CS), Italy

² IAB U1209 UMR5309 UGA, Université Grenoble Alpes, 38042 Grenoble, France

³ Department of Physics, University of Calabria, 87036 Rende (CS), Italy

⁴ Institute of Chemistry Timisoara of Romanian Academy 24, Mihai Viteazu Bvd. 300223, Timisoara, Romania

⁵ Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy

⁶ Department of Physics and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio 44106, USA

⁷ Fondazione Con Il Cuore and IIT Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy

**Corresponding authors:* CNR NANOTEC- Institute of Nanotechnology *U.O.S. Cosenza*, 87036 Rende (CS), Italy (*L.R.*);

Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy (M.L.).

E-mail address: loredana.ricciardi@cnr.it; massimo.ladeda@unical.it

Figure S1. Zeta-potential of Ir_1 -SiO₂ nanoparticles as a function of pH.

Figure S2. Zeta-potential of AuSiO₂ nanoparticles as a function of pH.

Figure S3. TEM images (scale bar: 50 nm) (left) and size distribution (right) of a) Ir_1 -SiO₂ and b) AuSiO₂. The hydrodynamic diameter of Ir_1 -SiO₂ and AuSiO₂ is 59 ± 3 nm (PdI = 0.051) and 56 ± 3 nm (PdI = 0.058), respectively.

Figure S4. Absorption spectrum of Ir_1 in water solution.

Figure S5. Emission spectrum of Ir_1 in water solution at room temperature under 390 nm excitation beam.

Figure S6. Emission spectrum of Ir_1 in water solution at room temperature under 780 nm excitation beam.

a)

Figure S7. a) Photobleaching of ABDA by singlet oxygen at different irradiation times in presence of $[Ru(2,2'-bpy)_3]Cl_2$ and b) plotting of ABDA absorption at 378 nm as a function of illumination time.