Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Wafer-Scale Reliable Switching Memory based on 2-Dimensional Layered Organic-Inorganic Halide Perovskite

Ja-Young Seo,[†]a Jaeho Choi,[†]b Huo-Seon Kim,^c Jaegyeom Kim,^d June-Mo Yang,^a

Can Cuhadar,^a Ji Su Han,^b Seung-Joo Kim,^d Donghwa Lee,^e Ho Won Jang*^b and

Nam-Gyu Park*a

^aSchool of Chemical Engineering, Energy Frontier Laboratory, Sungkyunkwan University, Suwon 16419, Korea

^bDepartment of Materials Science and Engineering, Research Center for Advanced Materials, Seoul National University, Seoul 08826, Korea

^cLaboratory of Photomolecular Science, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

^dDepartment of Chemistry, Ajou University, Suwon 16499, Korea

^eDepartment of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea

* Corresponding authors

H. W. J.: E-mail: <u>hwjang@snu.ac.kr</u>

N.-G. P.: E-mail: npark@skku.edu

⁺These authors contributed equally to this work.

Sample		a (Å)	b (Å)	<i>c</i> (Å)	V (Å ³)
MAPbI ₃	bare	8.8528(7)		12.563(3)	984.6(2)
	Ag	8.8518(7)		12.565(3)	984.6(2)
	Ag_V	8.8559(7)		12.590(3)	987.4(2)
	AgI_0.8mmol	8.8594(7)		12.575(3)	987.0(2)
BA ₂ PbI ₄	bare	8.862	8.682	27.509(1)	2116.6(4)
	Ag	8.862	8.682	27.505(1)	2116.2(4)

Table S1. Lattice parameters and unit cell volumes of the samples

Ag_V	8.862	8.682	27.512(1)	2116.8(4)
Agl_0.8mmol	8.862	8.682	27.615(1)	2124.7(4)

Table S2. Resistive switching properties of the BA_2PbI_4 based memristor.

Device structure	Switching voltage	Endurance	Retention time	Switching
	(V)	(cycle)	(s)	speed (ms)
Ag/BA ₂ PbI ₄ /Pt	0.5 (SET) -0.6 (RESET)	250	10 ³	10

Figure S1. Cross-sectional scanning electron microscopy images for (a) BA_2PbI_4 , (b) $BA_2MAPb_2I_7$, (c) $BA_2MA_2Pb_3I_{10}$ and (d) $MAPbI_3$. The OHP thin films formed on the Pt coated silicon wafer.

Figure S2. *I-V* curves for forming process and set process for (a) Ag/BA₂PbI₄/Pt; (b)Ag/BA₂MAPb₂I₇/Pt; (c)Ag/BA₂MA₂Pb₃I₁₀/Pt. All *I-V* curves measured at one electrode and showed electroforming-free process

Figure S3. (a) Energy band diagram and (b) Schottky barrier heights at each metal electrode interface calculated by difference between the Fermi level of $(BA)_2(MA)_{n-1}Pb_nI_{3n+1}$ and work function of metal.

Figure S4. *I-V* curve of $Au/BA_2PbI_4/Pt$ device. The electric field was applied from positive sweeping to negative sweeping.

Figure S5. Retention for LRS of (a)Ag/BA₂PbI₄/Pt, (b) Ag/BA₂MAPb₂I₇/Pt and (c) Ag/BA₂MA₂Pb₃I₁₀/Pt devices. The measured resistances are 50, 33 and 27 ohm for BA₂PbI₄, BA₂MAPb₂I₇, and BA₂MA₂Pb₃I₁₀, respectively.

Figure S6. XRD patterns of four different samples for (a) BA_2PbI_4 and (b) MAPbI_3, where (1) represents the as-prepared perovskite on Pt electrode (Perovskite/Pt), (2) the as-prepared perovskite with Ag electrode (Ag/perovskite/Pt), (3) the sample after 10 cycles of voltage sweeping (bias aged Ag/perovskite/Pt) and (4) a thin film of mixture of AgI and perovskite with 0.8 mmol of AgI with respect to 1 mol of perovskite (mixture perovskite/Pt). The area of Ag was 0.09 cm² with the thickness of 150 nm. The voltage sweeping cycle was $0.5 V \rightarrow 0 V \rightarrow -0.5 V \rightarrow 0 V$. The perovskite phase is marked with orange circles. A indicates metallic Ag, # denotes AgI and S corresponds to peak from silicon wafer.* denotes unknown peak.

Figure S7. The unit cell volumes of three different samples mentioned in Figure S6 for (a) BA₂PbI₄, and (b) MAPbI₃ calculated by lattice parameters listed in Table S1.

Figure S8. BA₂PbI₄ film deposited on (a) Si wafer and (b) its thickness measured from different part designated in (a).