## Supplementary Information for

## TiS<sub>3</sub> Sheet Based Van der Waals Heterostructures with Tunable Schottky Barrier

Jie Liu <sup>1,2,3</sup>, Yaguang Guo<sup>1,2,3</sup>, Fancy Qian Wang<sup>1,2,3</sup>, and Qian Wang<sup>1,2,3</sup>

<sup>1</sup>Center for Applied Physics and Technology, Peking University, Beijing 100871, China

<sup>2</sup>Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China

<sup>3</sup>Collaborative Innovation Center of IFSA (CICIFSA), Shanghai JiaoTong University, Shanghai 200240, China



**Fig. S1** (a) Top and (b) side views of the TiS<sub>3</sub>/G heterostructure of Case 2. (c) The First Brillouin zone and thigh-symmetry q-point paths:  $\Gamma(0.0, 0.0, 0.0) \rightarrow X(0.5, 0.0, 0.0)$ 

0.0)  $\rightarrow$  H<sub>1</sub>(0.543, 0.272, 0.0)  $\rightarrow$   $\Gamma$ (0.0, 0.0, 0.0)  $\rightarrow$  C(0.5, 0.5, 0.0)  $\rightarrow$  H(0.457, 0.728, 0.728)

0.0)  $\rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow Y(0.0, 0.5, 0.0) \rightarrow H_2(-0.457, 0.272, 0.0).$  (d) Electronic band structure projected on the TiS<sub>3</sub> layer. (e) Schematic depictions of the band alignment. These results are all calculated at the GGA-PBE level.



**Fig. S2** Top views of the  $TiS_3/G$  heterostructure in five different stacking patterns (S1–S5). The titanium, sulfur, and carbon atoms are represented by the cyan, yellow and dark red spheres, respectively.



Fig. S3 Electronic band structure of the  $TiS_3$ /graphene heterostructure aligned with respect to the vacuum level projected on (a) the  $TiS_3$  layer, and (b) the graphene sheet calculated by using the GGA–PBE functional.



Fig. S4 The first Brillouin zone and high-symmetry *q*-point paths:  $\Gamma(0.0, 0.0, 0.0) \rightarrow Y(0.0, 0.5, 0.0) \rightarrow A(0.5, 0.5, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow B(0.5, 0.5, 0.0)$  for the TiS<sub>3</sub>/G heterostructure.



Fig. S5 Band structures of the isolated (c)  $TiS_3$  monolayer and (d) graphene monolayer calculated by the GGA–PBE functional using the undistorted supercell of the two 2D materials.



**Fig. S6** Top views of the heterostructures formed by  $(a_1)$ – $(a_2)$  TiS<sub>3</sub> and B-doped graphene and  $(b_1)$ - $(b_2)$  TiS<sub>3</sub> and N-doped graphene with the concentrations of  $(a_1)$ - $(b_1)$  1/32 and  $(a_2)$ - $(b_2)$  1/16. For a clear view, green and gray spheres denote the boron and nitrogen atoms, respectively.



Fig. S7 Schematic depictions of the SBHs calculated by using the PBE-GGA functional for the Van der Waals heterostructure constructed by  $TiS_3$  layer contacted with (a) pristine graphene, (b) 1/32 B–doped, (c) 1/16 B–doped, (d) 1/32 N–doped, and (e) 1/16 N–doped graphene.



**Fig. S8** (a) Top and (b) side views of the  $TiS_3/T-MoS_2$  heterostructure. (c) The First Brillouin zone and the high-symmetry *q*-point paths:  $\Gamma(0.0, 0.0, 0.0) \rightarrow X(0.5, 0.0, 0.0) \rightarrow H_1(0.507, 0.464, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow C(0.5, 0.5, 0.0) \rightarrow H(0.493, 0.536, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow Y(0.0, 0.5, 0.0) \rightarrow H_2(-0.493, 0.464, 0.0). (d) Electronic band structure projected on the <math>TiS_3$  layer calculated at the GGA-PBE level.



**Fig. S9** (a) Top and (b) side views of the  $TiS_3/T$ -WS<sub>2</sub> heterostructure. (c) The first Brillouin zone and the high-symmetry *q*-point paths:  $\Gamma(0.0, 0.0, 0.0) \rightarrow X(0.5, 0.0, 0.0) \rightarrow H_1(0.518, 0.276, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow C(0.5, 0.5, 0.0) \rightarrow H(0.482, 0.724, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow Y(0.0, 0.5, 0.0) \rightarrow H_2(-0.482, 0.276, 0.0). (d) Electronic band structure projected on the TiS<sub>3</sub> layer calculated at the GGA-PBE level.$ 



**Fig. S10** (a) Top and (b) side views of the TiS<sub>3</sub>/T-MoSe<sub>2</sub> heterostructure. (c) The first Brillouin zone and the high-symmetry *q*-point paths:  $\Gamma(0.0, 0.0, 0.0) \rightarrow X(0.5, 0.0, 0.0) \rightarrow H_1(0.535, 0.390, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow C(0.5, 0.5, 0.0) \rightarrow H(0.465, 0.610, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0) \rightarrow Y(0.0, 0.5, 0.0) \rightarrow H_2(-0.465, 0.390, 0.0). (d) Electronic band structure projected on the TiS<sub>3</sub> layer calculated at the GGA-PBE level.$ 



**Fig. S11** (a) Top and (b) side views of the TiS<sub>3</sub>/T-WSe<sub>2</sub> heterostructure. (c) The first Brillouin zone and the high-symmetry *q*-point paths:  $\Gamma(0.0, 0.0, 0.0) \rightarrow X(0.5, 0.0, 0.0) \rightarrow M(0.5, 0.5, 0.0) \rightarrow Y(0.0, 0.5, 0.0) \rightarrow \Gamma(0.0, 0.0, 0.0)$ . (d) Electronic band structure projected on the TiS<sub>3</sub> layer calculated at the GGA-PBE level.



Fig. S12 Charge density difference (averaged in the plane parallel to the interface) of the  $TiS_3/G$  heterostructure.

**Table S1** Comparison of the binding energy  $(E_b)$ , band bending  $(\Delta E_F)$ , and Schottky barrier height ( $\Phi_e$  for electron and  $\Phi_h$  for hole) between case 1 and case2.

|        | $E_b$  | $\Delta E_F$ | $\Phi_e$ | $arPsi_h$ |
|--------|--------|--------------|----------|-----------|
| Case 1 | 65 meV | -0.38        | -0.01    | 0.23      |
| Case 2 | 66 meV | -0.34        | -0.01    | 0.22      |

**Table S2** The relative energies ( $\Delta E$  in meV/supercell) of the five configurations (S1–S5) of the TiS<sub>3</sub>/G heterostructure in different stacking patterns.

|            | S1  | S2  | S3   | S4  | S5 |
|------------|-----|-----|------|-----|----|
| $\Delta E$ | 1.9 | 0.5 | 10.9 | 0.1 | 0  |

**Table S3**Comparison of the Schottky barrier heights calculated by using the HSE06and GGA-PBE functionals of the Van der Waals heterostructures constructed by  $TiS_3$ layer contact with 1/16 B-doped, 1/32 B-doped, pristine, 1/32 N-doped, 1/16 N-dopedgraphene.

|         |           | B (1/16) | B (1/32) | pristine | N (1/32) | N (1/16) |
|---------|-----------|----------|----------|----------|----------|----------|
| GGA-PBE | $arPsi_e$ | 0.45     | 0.34     | -0.01    | -0.09    | -0.26    |
|         | $arPsi_h$ | -0.14    | -0.04    | 0.24     | 0.38     | 0.53     |
| HSE06   | $arPsi_e$ | 0.85     | 0.46     | 0.25     | -0.09    | -0.14    |
|         | $arPsi_h$ | 0.23     | 0.58     | 0.76     | 1.09     | 1.14     |

**Table S4** Lattice parameters of the TiS<sub>3</sub> and the T-MX<sub>2</sub> (M=Mo or W, X= S or Se) supercells.  $u_i$ ,  $v_i$ , and  $\gamma_i$ , represent the lattice constants (in Å) and the angle between the vectors (in degree), respectively.  $u_{1,2}$  ( $v_{1,2}$  or  $\gamma_{1,2}$ ) and N represent the lattice

|                            | TiS <sub>3</sub><br>a=4.99 Å, b=3.39 Å, α=90° |             |            | MX <sub>2</sub> | K <sub>2</sub> M |            | ismatch (%)             |           | N    |     |
|----------------------------|-----------------------------------------------|-------------|------------|-----------------|------------------|------------|-------------------------|-----------|------|-----|
|                            | $u_I$                                         | $v_l$       | <i>γ</i> 1 | $u_2$           | $v_2$            | $\gamma_2$ | <i>u</i> <sub>1_2</sub> | $v_{I_2}$ | γ1_2 |     |
| T-MoS <sub>2</sub>         | 8.44                                          | 17.75       | 88.05      | 8.41            | 18.08            | 87.82      | 0.30                    | 1.86      | 0.26 | 123 |
| a=3.19 Å, b=3.19 Å, α=120° |                                               |             |            |                 |                  |            |                         |           |      |     |
| T-WS <sub>2</sub>          | 8.41                                          | 22.38 80.63 | 90 (2      | 53 8.39         | 22.19            | 79.11      | 0.30                    | 0.90      | 1.93 | 151 |
| a=3.17 Å, b=3.17 Å, α=120° |                                               |             | 80.05      |                 |                  |            |                         |           |      |     |
| T-MoSe <sub>2</sub>        | 11.32                                         | 10.00       | 81.96      | 11.25           | 18.08            | 81.05      | 0.62                    | 0.02      | 1.12 | 162 |
| a=3.33 Å, b=3.33 Å, α=120° |                                               | 18.08       |            |                 |                  |            |                         |           |      |     |
| T-WSe <sub>2</sub>         | 9.97                                          | 16.93       | 90.00      | 9.78            | 16.95            | 90.00      | 1.93                    | 0.08      | 0.00 | 134 |
| a=3.26 Å, b=3.26 Å, α=120° |                                               |             |            |                 |                  |            |                         |           |      |     |

mismatch and the total number of atoms of the heterostructure.