Supporting Information

Transparent CdS@TiO₂ Nanotextile Photoanode with Boosted Photoelectrocatalytic

Efficiency and Stability

Long Liu,^{a,b} HuilinHou,^a Lin Wang,^a RuiXu,^b YongLei,^b ShaohuaShen,^c Dongjiang Yang^{d,e,*} and Weiyou Yang^{a,*}

^a Institute of Materials, Ningbo University of Technology, Ningbo 315016, P.R. China.

^b Institut für Physik & IMN MacroNano (ZIK), Technische Universität Ilmenau, Ilmenau 98693, Germany.

^c International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shanxi 710049, P.R. China.

^d Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.

^e Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan, Brisbane, QLD 4111, Australia.

Corresponding Authors: E-mails: <u>d.yang@qdu.edu.cn</u> (D. Yang) and <u>weiyouyang@tsinghua.org.cn</u> (W. Yang)

This supplementary file includes:

- Fig. S1. High-resolution TEM images show that the TiO_2 shell thickness changes with the number of ALD cycles.
- **Fig. S2.** Graph plotting shell thickness *vs.* ALD cycle number and the current density and photoconversion efficiency *vs.* ALD cycle number.
- Fig. S3. Energy dispersive spectra (EDS) recorded from a CdS@TiO₂ core/shell nanowire.
- Fig. S4. XPS survey scan for CdS textile and CdS@TiO₂ textile film.
- Fig. S5. Photoelectrocatalytic *J-V* curves of CdS textile electrode as a function of the scan time.
- Fig. S6. Photocurrent response in Na₂SO₄ aqueous solution.
- Fig. S7. The XRD pattern of $CdS@^{30C}TiO_2$ nanotextile photoanode before and after PEC reaction.
- Fig. S8. The Tauc plots of ALD-grown TiO₂ layer and CdS textile film.
- Fig. S9. The Mott–Schottky plots of TiO₂ and CdS photoanodes.
- Fig. S10. The cross-section models of CdS NWs and CdS@TiO₂ NWs.
- Fig. S11. The SEM image, FDTD simulation and photocurrent response of CdS@^{30C}TiO₂ planar film.
- **Fig. S12.** PL spectra of CdS textile, CdS@ 30C TiO₂ textile, and TiO₂ textile samples.
- Fig. S13. The charge separation efficiency of CdS textile, $CdS@^{30C}TiO_2$ textile and $CdS@^{100C}TiO_2$ textile photoanode.
- Table S1. Summary of typicalPEC performances of 1D CdS nanostructures reported in the literatures.

Supplementary Notes

Note S1. The corresponding light energy to chemical energy conversion (photoconversion) efficiencies.

Note S2. Carrier density from Mott–Schottky plots.

Note S3. Theory for separation and injection efficiency calculation.

Fig. S1. Typical TEM images of the as-grown CdS@TiO₂ nanowires with various ALD cycles.

Fig. S2. (a) The relationship between the shell thicknesses *vs.* ALD cycles. (b) The relationship of current densities and photoconversion efficiencies *vs.* ALD cycles (b).

Fig. S3. The representative element mappings recorded from a single $CdS@TiO_2$ core/shell nanowire.

Fig. S4. (a) Typical XPS survey scans of CdS and CdS@TiO₂ textile films, (b-c) the Cd 3d and S 2p core level spectra of the CdS and CdS@TiO₂ textile films, respectively. (d-e) the Ti 2p and O 1s core level spectra, respectively.

Fig. S4a gives the general XPS scan spectrum of CdS and CdS@^{30C}TiO₂ textile films. As shown in Fig. 4b, the Cd 3d core level XPS spectrum has two peaks at 404.8 eV ($3d_{5/2}$) and 411.6 eV ($3d_{3/2}$). The S 2p core level spectrum indicates that there are two chemically distinct species in the spectrum. The peak at 161.9 eV is assigned to the sulfide and the peak at 168.4 eV is assigned to sulfur in sulfate (Fig. S4c). The reduced peak intensities of Cd and S within the CdS@TiO₂ counterpart indicate the existence of TiO₂ protection film. The two symmetric peaks of Ti 2p located at 458.6 and 464.4 eV are ascribed to the Ti 2p3/2 and Ti 2p1/2 for the TiO₂ sample, respectively, which indicate a formal valence of four (Ti⁴⁺, Fig. S4d).The O1s peak at 530.1 eV (OI) is attributed to the Ti-O bond of TiO₂, and the one at 532.1 eV (OII) responds to the OH group on the surface, respectively (Fig. S4e).

Fig. S5. Photoelectrocatalytic J-V curves of pristine CdS textile electrode as a function of the

scan times.

Fig. S6. Photocurrent response in Na₂SO₄ aqueous solution (0.5 M, pH = 6.8) of CdS@^{30C}TiO₂ and CdS textile electrode under simulated sunlight at 0.1 V (*vs.* Ag/AgCl) with intermittent illumination.

Fig. S8. (a) and (b) The Tauc plots of ALD-grown TiO₂ layer and CdS textile film, respectively.

Fig. S9. The Mott–Schottky plots of the photoanodes based on TiO₂ film and CdS textile.

Fig. S10. (a) and (b) The cross-section models of CdS andCdS@TiO₂ NWs, respectively.

Fig. S11. (a) SEM image of electro-deposition of CdS flat film with 30 cycle TiO₂ deposition. (b) The simulated cross-sectional electromagnetic wave distributions of CdS@^{30C}TiO planar film at the wavelength of 300 nm. (c) The PEC response of planar and textile film. The CdS planar film was cathodically deposited from an aqueous solution of 0.2 M CdCl₂• 2H₂O and 0.01 M of Na₂S₂O₃ with a pH value of 2.5.

Fig. S12. Typical PL spectra of CdS, $CdS@^{30C}TiO_2$ and TiO_2 films. It seems that the $CdS@^{30C}TiO_2$ NWs exhibit a much weaker peak from 480 to 580 nm than CdS NWs under excitation at 325 nm, indicating the effective charge transfer between CdS and TiO₂, which can be ascribed to the lower recombination probability of photoinduced electrons and holes. The transfer of electrons from CdS to TiO₂ facilitates the separation of photoinduced electrons and holes in TiO₂, and thus inhibits the recombination of the photogenerated charge carriers.

Fig. S13. (a) The light harvesting efficiencies of the CdS, $CdS@^{30C}TiO_2$ and $CdS@^{100C}TiO_2$ nanotextile photoanodes. (b) The AM 1.5 photon flux incident at each wavelength. (c) The current flux $J_{flux}(\lambda)$ and the integrated current $J_{abs}(\lambda)$ of these samples. (d) The charge separation efficiencies of these three samples.

Table S1. Summary of typical PEC performances of 1D CdS nanostructures recently reported in	
the literatures.	

Photocatalyst	Catalyst amount /mg	Scavenger	Light source	Photocurrent at 0 V vs. RHE (mA/cm ²)	Amount of H ₂ evolution (mmol/g/h)	Ref.
CdS@TiO ₂	0.62	$ \frac{Na_2S}{+Na_2SO_3} $	Simulated sunlight	1.8	47.5	This work
CdS/WS ₂	200	Lactic acid	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 400 \text{ nm}) \end{array}$	-	27.5	1
CdS/WS ₂ - MoS ₂	1	Lactic acid	Simulated sunlight	1.0×10-3	209	2
CdS/WS2- graphene	8	Na_2S + Na_2SO_3	$\begin{array}{c} 350 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 420 \text{ nm}) \end{array}$	-	1.842	3
MoS ₂ /CdS	200	Lactic acid	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 400 \text{ nm}) \end{array}$	1.6 (0 V vs. Ag/AgCl)	58.3	4
MoS ₂ /CdS	1	Na_2S + Na_2SO_3	Simulated sunlight	1.6 (0 V vs SCE)	35	5
MoS ₂ /CdS	20	Lactic acid	Simulated sunlight	-	174	6
CuO/CdS/TiO ₂ (with Pt)	-	K ₂ HPO ₄ /K H ₂ PO ₄	Simulated sunlight	-1.4	0.4 (µmol/h)	7
CdS/TiO ₂	2	Na ₂ SO ₄	300W xenon lamp	0.12	-	8
5% Pt/CdS-N	50	lactic acid	$\begin{array}{c cccc} 300 & W & Xe \\ lamp(\lambda \ge 400 \\ nm) \end{array}$	0.015	16.27	9
CdS-Co ₃ O ₄	50	Na_2S + Na_2SO_3	$\begin{array}{c c} 300 & W & Xe \\ lamp(\lambda \geq 420 \\ nm) \end{array}$	-	0.23	10
Co(OH) ₂ /CdS	200	Na ₂ SO ₄	LED (3 W, 365 nm)	0.027	14.43	11
MoS ₂ /CdS	-	lactic acid	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 400 \text{ nm}) \end{array}$	4×10-3	1800 (µmol/h)	12
Ni ₂ P/CdS	1	Na_2S + Na_2SO_3	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 400 \text{ nm}) \end{array}$	-	553	13
CdS/ZnS-0.5	-	Na_2S + Na_2SO_3	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 420 \text{ nm}) \end{array}$	0.01	240 (µmol/h)	14
CdS-BiVO ₄	6	Ammonium oxalate	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 420 \text{ nm}) \end{array}$	5×10-3	-	15
CdS NRPJs	20	$\begin{array}{c} Na_2S\\ + Na_2SO_3 \end{array}$	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 420 \text{ nm}) \end{array}$	0.05	26	16
Ni(OH) ₂ - CdS/g-C ₃ N ₄	1	Na_2S + Na_2SO_3	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 420 \text{ nm}) \end{array}$	0.03	115.18	17
CdS/ZnIn ₂ S ₄	0.1	$ \begin{array}{c} Na_2S \\ + Na_2SO_3 \end{array} $	$\begin{array}{c} 300 \text{ W} \\ \text{Xe lamp} \\ (\lambda \ge 420 \text{ nm}) \end{array}$	6	-	18

Notes S1. Calulations of applied bias photon-to-current efficiency (ABPE)

The ABPE was calculated as follows:

ABPE(%)= ((total power output-electrical power output)/light power input)×100

$$= j_p((E_{rev}^0 - |E_{app}) / I_0) \times 100$$

Where j_p is the photocurrent density, $j_p E^0_{rev}$ is the total power output, $j_p |E_{app}|$ is the electrical power input, I_0 is the power density of incident light. E^0_{rev} is the standard reversible potential, which is 1.23 V vs. RHE. The applied potential of $E_{app}=E_{meas}-E_{aoc}$, where E_{meas} is the electrode potential (vs. RHE) of the working electrode at which the photocurrent was measured under illumination, and E_{aoc} is the electrode potential (vs. RHE) of the same working electrode at open circuit conditions under the same illumination and electrolyte.

Notes S2. Calculation on the carrier density from Mott-Schottky plots.

Mott–Schottky analysis is based on the assumption, that the capacitance of the space charge layer is much less than that of the Helmholtz layer. Mott–Schottky plots were conducted and shown in Fig. S6. Mott–Schottky relationships of n- and p-type semiconductors are expressed as:

$$\frac{1}{C^2} = \frac{2}{\varepsilon \varepsilon_0 e N_d A^2} [(E - E_{FB}) - \frac{kT}{e}]$$

Where ε_0 is the permittivity of vacuum (8.854×10⁻¹² F/m), ε is the dielectric constant of TiO₂ (*i.e.*, 170) and CdS (*i.e.*, 8.7), and *e* is the electronic charge (*i.e.*, 1.603×10⁻¹⁹ C). N_d refers the donor densities, which is calculated from the slopes of the curves. *T* is the operation temperature (*i.e.*, 298 K), and *k* is the Boltzmann's constant (*i.e.*, 1.38×10⁻²³ J/K). *E* is the electrode potential, and E_{FB} is the flat-band potential, and *C* is the depletion-layer capacitance. The carried densities of CdS and TiO₂ calculated by the fitting curves are 1.14×10^{21} and 6.83×10^{18} cm⁻³, respectively. The low carrier density of TiO₂ layer represents its poor conductivity, which is why the thicker TiO₂ film is seldom used as the cocatalyst.

Notes S3. Calculation of separation and injection efficiency

The photocurrent is determined by:

$$J_{H_2O} = J_{abs} \cdot \eta_{sep} \cdot \eta_{transfer}$$

Where J_{H2O} is the H₂O oxidation photocurrent, J_{abs} is the photon absorption rate (namely the photocurrent density), η_{sep} is the charge separation efficiency, $\eta_{transfer}$ is the rate of charge injection.

Here, the rate of charge transfer to the electrolyte by oxidation of sacrificial agents at the semiconductor/electrolyte interface is very fast. Accordingly, it can be assumed that the surface recombination of the charges is eliminated (*i.e.*, $\eta_{transfer} \approx 100\%$). That is to say,

$$J_{Na_2SO_3} = J_{abs} \cdot \eta_{sep}$$

The $J_{abs}(\lambda)$ can be calculated by integrating the current flux $J_{flux}(\lambda)$ to wavelength λ :

$$J_{abs}(\lambda) = \int J_{flux}(\lambda) d\lambda$$
$$J_{flux}(\lambda) = N_{ph}(\lambda) \cdot LHE(\lambda) \cdot e$$

Where λ is the bandedge of the semiconductor absorption, $J_{flux}(\lambda)$ is the current flux at λ , $N_{ph}(\lambda)$ is thephoton flux, *e* is the elementary charge (*i.e.*, 1.602×10⁻¹⁹), *LHE*(λ) is the light harvest efficiency which can be gotten from the absorption $A(\lambda)$:

$$LHE(\lambda) = 1 - 10^{-A(\lambda)}$$

References

- X. Hai, K. Chang, H. Pang, M. Li, P. Li, H. Liu, L. Shi and J. Ye, J. Am. Chem. Soc., 2016, 138, 14962-14969.
- 2. D. A. Reddy, H. Park, R. Ma, D. P. Kumar, M. Lim and T. K. Kim, ChemSusChem,

2017, **10**, 1563–1570.

- 3. Q. Xiang, F. Cheng and D. Lang, *ChemSusChem*, 2016, **9**, 996-1002.
- 4. X.L. Yin, G.Y. He, B. Sun, W.-J. Jiang, D.J. Xue, A.-D. Xia, L.J. Wan and J.S. Hu, *Nano Energy*, 2016, **28**, 319-329.
- 5. A. Pareek, H. G. Kim, P. Paik and P. H. Borse, J. Mater. Chem. A, 2017, 5, 1541-1547.
- D. P. Kumar, S. Hong, D. A. Reddy and T. K. Kim, J. Mater. Chem. A, 2016, 4, 18551-18558.
- W. Septina, R. R. Prabhakar, R. Wick, T. Moehl and S. D. Tilley, *Chem. Mater.*, 2017, 29, 1735–1743.
- 8. P. Zhou, Z. Le, Y. Xie, J. Fang and J. Xu, J. Alloys Compd., 2017, 692, 170-177.
- L. Zhang, X. Fu, S. Meng, X. Jiang, J. Wang and S. Chen, *J. Mater. Chem. A*, 2015, 3, 23732-23742.
- 10. J. Yuan, J. Wen, Q. Gao, S. Chen, J. Li, X. Li and Y. Fang, *Dalton Trans.*, 2015, 44, 1680-1689.
- X. Zhou, J. Jin, X. Zhu, J. Huang, J. Yu, W.Y. Wong and W.-K. Wong, *J. Mater. Chem. A*, 2016, 4, 5282-5287.
- J. He, L. Chen, F. Wang, Y. Liu, P. Chen, C. T. Au and S. F. Yin, *ChemSusChem*, 2016, 9, 624-630.
- 13. Z. Sun, H. Zheng, J. Li and P. Du, *Energy Environ. Sci.*, 2015, **8**, 2668-2676.
- 14. D. Jiang, Z. Sun, H. Jia, D. Lu and P. Du, J. Mater. Chem. A, 2016, 4, 675-683.
- 15. B. Han, S. Liu, Y.J. Xu and Z.-R. Tang, *RSC Adv.*, 2015, **5**, 16476-16483.
- K. Li, M. Han, R. Chen, S. L. Li, S. L. Xie, C. Mao, X. Bu, X. L. Cao, L. Z. Dong and P. Feng, *Adv. Mater.*, 2016, 28, 8906-8911.

- 17. Z. Yan, Z. Sun, X. Liu, H. Jia and P. Du, *Nanoscale*, 2016, **8**, 4748-4756.
- B. Xu, P. He, H. Liu, P. Wang, G. Zhou and X. Wang, *Angew. Chem. Int. Ed.*, 2014, 53, 2339-2343.