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Measurement Technique:

A detailed measurement schematic for parametric amplification is shown in the figure S1. We generate two 
RF signals using Rohde and Schwarz SMA100 signal generators. The RF signal at the frequency  is used 𝜔
for actuating and another RF signal at the frequency  is used for pumping the resonator. Both the RF 2𝜔
signals are combined using a Minicircuit RF combiner. A DC voltage for tuning the resonant frequency is 
added to the combined RF signal using a Minicircuit bias tee. This RF+DC is applied at the gate of the 
resonator. At the drain, the output signal is filtered using another bias tee to extract only RF signal. The 
filtered RF signal is amplified using a MITEQ AU1694 low noise amplifier. The amplified signal is  
measured using SR844 lock-in at the actuation frequency ( ).   𝜔

Figure S1 Detailed measurement schematic for performing parametric amplification in the  drum 𝑀𝑜𝑆2

resonator. Two signal generators are used, one at frequency for actuation and another at frequency 𝜔 
 to modulate the spring constant of the resonator. The output RF signal is filtered using a bias tee 2𝜔

followed by amplification through a low noise amplifier. The amplified signal is measured using lock-in 
at the frequency .  𝜔

Estimation of  Duffing nonlinearity ( ):𝛼

Duffing oscillator can be modeled as1:

(S1)�̈� + 2𝜖𝜇�̇� + 𝜔2
0𝑧 + 𝜖𝛼𝑚𝑧3 = 𝑓(𝑡)
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Where  is damping coefficient,  non-linear Duffing coefficient per unit mass,  the 𝜇 ≥  0 𝛼𝑚 𝑓(𝑡) = 𝑓0𝑐𝑜𝑠(𝜔𝑡)

applied force per unit mass. We define  , where  is the resonance frequency,  frequency 𝜔 = 𝜔0 + 𝜖 𝜎 𝜔0 𝜎
detuning parameter and  small dimensionless parameter.𝜖

From the backbone curve (the curve that connects the peak ( ) of the response functions for different 𝑎𝑝𝑒𝑎𝑘

drives):
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Figure S2 (a) Variation of frequency corresponding to the peak of the amplitude with . Decreasing peak 𝑉𝑎𝑐
𝑔

frequency with increasing force indicates negative cubic nonlinearity. (b) Detuning parameter as function 
of square of the peak amplitude.

The estimated   is  .𝛼 = 𝑚.𝛼𝑚 ∼  ‒ 2.3 ×  1012 𝑘𝑔.𝑚 ‒ 2. 𝑠 ‒ 2

Simulation Details:

Simulations are performed using MATLAB 2014 by solving the governing differential equation as 
described by the equation (3) in the main text. Duffing coefficients  and quality factor Q used in the 𝛼
simulations are obtained from the experimental observations.
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where  is the modulating spring constant and  is the capacitance 𝑘𝑝 = (∂2𝐶𝑔/∂𝑧2)𝑉𝑑𝑐
𝑔 𝑉𝑎𝑐

𝑝 𝐶𝑔 = 𝐴𝜖0/(𝑧0 ‒ 𝑧)

between the gate and the membrane,  is the gap between membrane and the gate,  is the permittivity of 𝑧0 𝜖0

free space. The equation above can be re-written as
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In equation (S5),  is the phase between drive frequency and pump frequency. Since , we assume 𝜙 𝑧 ≪  𝑧0

 and  Further, we non-dimensionalize the above equation as:∂𝐶𝑔/∂𝑧 = 𝐴𝜖0/𝑧2
0 ∂2𝐶𝑔/∂𝑧2 =  2𝐴𝜖0 /𝑧3
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In the equation, the derivatives are with respect to the new variable . We perform the simulation using the 𝜏
following parameters:

Parameter Value
𝑚 1.6 × 10 ‒ 17𝑘𝑔
𝑧0 270 × 10 ‒ 9𝑚
𝑡ℎ 6.5 × 10 ‒ 10 𝑚
𝑉𝑑𝑐

𝑔 ‒ 23 𝑉
𝑉𝑎𝑐

𝑔 ‒ 49 𝑑𝐵𝑚
𝑄 500
𝜔0 2𝜋 × 32.5 𝑀𝐻𝑧
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Figure S3 Gain for different Duffing non-linearity, it shows the gain for (a) maxima (b) minima. With 
increase in the nonlinearity, both the maxima and the minima limit towards unity gain.

The calculated critical voltage  using the above parameters is -22 dBm, beyond which self-oscillation is 𝑉𝑐

observed. Figures S3a and b show the effect of cubic nonlinearity on the gain with varying  for different 𝑉𝑎𝑐
𝑝

values of  The figures illustrate, the cubic nonlinearity plays a significant role in limiting the parametric  𝛼.

gain of the system3. Figure S4 is simulated with experimentally found . It shows 𝛼 ~ ‒ 2 × 1012 𝑘𝑔. 𝑚 ‒ 2. 𝑠 ‒ 2

the maximum gain is nearly 3 (when  is close to the critical voltage) which matches with the 𝑉𝑎𝑐
𝑝

experimentally observed value mentioned in the main text. Figure S5a shows the experimentally observed 
change in phase difference ( ) between two successive maxima (or minima) for different value of . We Δ𝜙 𝑉𝑎𝑐

𝑝

observe  changes from  to  at about -17 dBm   This is verified using simulation as shown Δ𝜙 180 ∘ 360 ∘ 𝑉𝑎𝑐
𝑝 .

in the figure S5b.

Figure S4 Maximum and Minimum Gain for 
. It shows that the gain is  𝛼 =  ‒ 2 × 1012 𝑘𝑔.𝑚 ‒ 2.𝑠 ‒ 2

limited due to the effect of the Duffing nonlineairity. 

(a). (b)



Figure S5 (a) Experimental (b) Simulated results, Phase difference  distorts and changes from  Δ𝜙 180𝑜

to . The shift occurs at around -17 dBm . Y axis has been linearly scaled for better comparison 360𝑜 𝑉𝑎𝑐
𝑝

between the experimental and simulated results.
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