Supporting information

Healable, Flexible, Transparent Heaters

Naveen Tiwari,^a Ankit,^a Mayank Rajput,^c Mohit R. Kulkarni,^a Rohit Abraham John,^a and Nripan Mathews *, ^{a, b,}

- *a.* School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553.
- ^{b.} Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553
- ^{c.} School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore 639798. E-mail: Nripan@ntu.edu.sg; Tel: +65 6790 4595

Scheme 1

1500 2000 2500 Wavenumber (cm-¹)

Figure S2. (a) FTIR spectra of polyurethane modified with furyl moiety (PU-F). b) FTIR spectra of PU-DA (Healable polymer). The absorption band at 1735 cm⁻¹ corresponds to the urethane stretching and indicates that the polymerization was complete.

500 2000 2500 Wavenumber (cm⁻¹)

Figure S3. DSC of the healable polymer (PU-DA). The glass transition temperature (Tg) of the polymer is -25.3 °C

Figure S4. TGA curve of the healable polymer. The working temperature of this polymer is below 220 °C because the weight loss of the polymer starts from the temperature above 200 °C.

Modified with APTES solution kept for 4 h Contact angle- 72.35° Concentration of APTES- 15 mM

Modified with APTES solution kept for 6 h Contact angle- 68.70° Concentration of APTES- 15 mM

Figure S5. Change in contact angle of the samples with 5 mM and 15 mM concentration of APTES solution at different time. The change in contact angle with 5 mM APTES solution is not much effective and the contact angle for 15 mM APTES solution after 24 h was shown in Figure 1(c).

Modified with APTES solution kept for 6 hr. Contact angle- 76.55° Concentration of APTES- 25 mM Modified with APTES solution kept for 24 hr. Contact angle- 61.75° Concentration of APTES- 25 mM

Figure S6. Change in contact angle of the samples with 25 mM concentration of APTES solution at different time

Figure S7. AFM images in 2D and 3D with and without APTES treatment. The RMS value of unmodified and modified sample was 4.8 nm and 4.3 nm respectively. (a) & (c) were the images of the sample without APTES treatment and (b) & (d) were the images of the sample with 15 mM APTES treatment.

Figure S8: Haze factor of the PU-DA polymer with and without silver nanowires.

Figure S9. Sheet resistance change of the sample with the number of bending and unbending cycle/times. The image inset in the bendingunbending graph shows the sample was wrapped around a 20 mm diameter cylinder

Figure S10. Surface roughness of the transparent electrode (TE) before and after healing. The surface roughness of the transparent electrode before and after healing was 100.491 nm and 53.983 nm respectively.

Figure S11. Sheet resistance change of a healable heater film with change in temperature. The film heater was cooled from 120 °C to RT and for every decrease in temperature the film was kept for 2 min at that temperature.

Figure S12. Variation in sheet resistance at different voltage for different transparent healable heater based on AgNWs.

Figure S13. Time – dependent temperature profiles at different input voltage with specified sheet resistance of 29.7 Ω / \Box .

Table SI. Comparison with other healable transparent elec
--

Material	substrate	T _{total} (%)	R _{sheet} (ohm/sq)	Area (cm²)	Healing temp	References
					(°C)	
AgNWs/PU-DA	glass	77	13	3.9*1.4	120	Present work
Cu NWs/DA-PU	glass	66.5	22.3	1*2	120	X. Zhang et. al, Materials Research Bulletin 2017 90 175-181
			11.5	1*2	532 nm laser~122	L. Chen et. al, Journal of Materials
Au@PCLx/rGO/Ag	Al foil				°C	Chemistry C, 2016, 4, 10018-
						10025

	On			3*0.2	800 W microwave	J. Li, G. Zhang, R. Sun and CP.
RFGO/PU	different				oven for 5 min	Wong, Journal of Materials
	pattern				then 2 h at 70 °C	Chemistry C, 2017, 5, 220-228.
			15	0.7*1	100	J. Li et. al, ACS Applied Materials
PEDOT/AgNW/FM-DA	PET	78				& Interfaces, 2015, 7, 14140-
						14149
			61.5		120	D. H. Lee et.al, ACS Applied
AgNW/PDMS-CPU	glass	91.1				Materials & Interfaces, 2016, 8,
						8129-8136
AgNWs/MDPB– FGEEDR	glass	50	9.5	8*12	110	C. Gong et.al, Adv. Mat., 2013, 25,
						4186-4191