Supporting Information

Porous Germanene As A Highly Efficient Gas Separation Membrane

Ang Bian¹, Yafei Dai^{1,2*} and Jinlong Yang^{2*}

¹School of Physics Science & Technology and Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China

²Hefei National Laboratory for Physical Sciences at Microscale, University of

Science and Technology of China, Hefei, Anhui 230026, China

*To Whom correspondence should be addressed: yfdai@njnu.edu.cn; jlyang@ustc.edu.cn

Table S1 The calculated energy barriers E_b (eV) for common gases (H₂, H₂O, N₂, CO, CO₂ and CH₄) and noble gases (He, Ne, Ar) penetrating through the 585 porous germanene.

E_b (eV)	585 Germanene	Silicene [1,2]
H ₂	0.27	0.34
H ₂ O	0.27	0.45
N ₂	0.72	1.03
СО	1.13	0.99
CO ₂	0.49	1.01
CH ₄	1.08	1.66
Не	0.25	0.57
Ne	0.35	1.18
Ar	0.94	2.89

Table S2 The selectivity (S) of H₂ relative to other common gases (H₂O, N₂, Co, CO₂, CH₄) and He relative to other noble gases (Ne, Ar) for the 585 porous germanene at T = 300 K.

585 Germanene Silicene [1,2] Graphene [3]

	S	S	S
H_2			
H_2O	10	10 ²	
N_2	107	1012	
СО	107	1011	
CO_2	10^{4}	10 ¹⁰	
CH ₄	1013	1013	10 ²³ ,10 ⁸
He	_	_	_
Ne	10	10 ³	_
Ar	1011	1018	_

Details of Molecular Dynamic Simulation

In order to show the superiority of our porous germanene during gas permeation, the ab initio molecular dynamic simulations (MD) with a Nose-Hoover thermostat is taken into consideration through VASP package. The constant-volume and constant-temperature (NVT) ensemble were employed during the simulation with a time step of 1 fs. The electrostatic interaction and van der Waals interaction were calculated using the atom based method. In simulation, we added a mixture gas of 31 H₂ and 18 CH₄ molecules, placed between the monolayer pure germanium and 555777 porous germanene with a distance of 6 Å. MD simulation is performed at the room temperature with a time span of 50 ps. From snapshots in Fig. S1, H₂ molecule in mixed gases can permeate through the pore of the 555777 porous germanene to the vacuum layer freely, while the CH₄ molecule is confined between the two layers from beginning to end.

Figure S1. Snapshots of gas mixture permeating through 555777 porous germanene nanosheet in MD simulation in the 0-50 ps at 300 K. The blue, grey, and green beads represent the C, H, and Ge atoms respectively.

References:

(1) W. Hu, X. Wu, Z. Li, and J. Yang, Phys. Chem. Chem. Phys., 2013, 15, 5753-5757.

- (2) W. Hu, X. Wu, Z. Li, and J. Yang, Nanoscale, 2013, 5, 9062-9066.
- (3) D. E. Jiang, V. R. Cooper, and S. Dai, Nano Lett., 2009, 9, 4019-4024.