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Figure S1 Side views of the five possible high-symmetry stacking patterns in bilayer TMDs MX2 like MoS2. The blue (black)
circles represent metal M (chalcogenide X) atoms. In the honeycomb lattice, there are three atomic coordinates: I: 0, 0; II: 1/3, 2/3;
III: 2/3, 1/3. In bilayer MX2, AA′ (corresponding to bulk 2H stacking) and AB (corresponding to bulk 3R stacking) are stable and
can be commonly found in natural and synthetic samples.

S1 Generalized interlayer bond polarizability model

In this section, we present the detailed derivation process of the generalized bond polarizability model.1–4 The
Raman intensity of a phonon mode k is given by1,4,5

I(k) ∝
∣∣eeei · R̃RR(k) · eeeT

s
∣∣2 ∝

∣∣∣∣∣∑
µν

ei,µes,ν∆αµν(k)

∣∣∣∣∣
2

, (S1)

where R̃RR(k) is the (3×3) Raman tensor of the phonon mode k, subscripts µ and ν indicate Cartesian components
(x, y or z) of the tensor, and eeei and eees are the unit vectors for the polarization of the incident and scattered light,
respectively. The Raman tensor element

∆αµν(k) = ∑
jγ

[
∂αµν

∂ r jγ

]
0

∆r jγ(k), (S2)

where r jγ is the position of atom j along direction γ (x, y or z) in equilibrium,
[

∂αµν

∂ r jγ

]
0

is the derivative of

the electronic polarizability tensor element αµν with respect to the atomic displacement from the equilibrium
configuration, and ∆r jγ(k) is the eigen-displacement of atom j along direction γ in the phonon mode k (i.e., the
eigenvector of the mass-normalized dynamic matrix).5 One can see that the Raman tensor of the phonon mode
k is proportional to the change of the polarizability by its vibration. According to the empirical bond polariz-
ability model, the polarizability of the system can be approximated by a sum of individual bond polarizabilities
from different bonds:1,4

αµν =
1
2 ∑

iB

[
α‖,B +2α⊥,B

3
δµν +(α‖,B−α⊥,B)

(
Riµ,BRiν ,B

R2
i,B

− 1
3

δµν

)]
, (S3)

where B indicates a bond connected to atom i, the boldface RRRi,B is the corresponding bond vector connecting
atom i to one of its neighbor atoms i′, Riµ,B is the µ (x, y or z) component of RRRi,B, and Ri,B is the length of RRRi,B.
α‖,B and α⊥,B are the bond polarizabilities for the bond B in the directions parallel and perpendicular to the
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bond, respectively. They depend on the bond Ri,B and therefore,

∂α‖,B
∂ r jγ

=
∂α‖,B
∂Ri,B

∂Ri,B

∂ r jγ
= α

′
‖,B

∂Ri,B

∂ r jγ

∂α⊥,B
∂ r jγ

=
∂α⊥,B
∂Ri,B

∂Ri,B

∂ r jγ
= α

′
⊥,B

∂Ri,B

∂ r jγ
, (S4)

where α ′‖,B and α ′⊥,B are the radial derivatives of the bond polarizabilities with respect to the bond length. The
values of α‖,B, α⊥,B, α ′‖,B and α ′⊥,B are functions of the bond length, and usually determined by fitting with
experimental Raman intensities.1–4

To obtain
∂Ri,B

∂ r jγ
, we need to use the following relations: RRRi,B =~ri′ −~ri,RRRi′,B =~ri −~ri′ = −RRRi,B,Ri,B =√

∑η(ri′η − riη)2 = Ri′,B. Subsequently,

∑
jγ

∂Ri,B

∂ r jγ
∆r jγ(k) = ∑

jγ

∂

√
∑η(ri′η − riη)2

∂ r jγ
∆r jγ(k) = ∑

jγ

1
2

1√
∑η(ri′η − riη)2

∂ ∑η(ri′η − riη)
2

∂ r jγ
∆r jγ(k)

= ∑
jγ

1
2

1√
∑η(ri′η − riη)2

(
∑
η

2(ri′η − riη)
∂ (ri′η − riη)

∂ r jγ

)
∆r jγ(k) (η or γ = x,y,z)

= ∑
jγ

1
2

1√
∑η(ri′η − riη)2

(
∑
η

2(ri′η − riη)(δi′ jδηγ −δi jδηγ)

)
∆r jγ(k)

= ∑
jγ

1
Ri,B

[
(ri′γ − riγ)(δi′ j−δi j)

]
∆r jγ(k) = ∑

jγ

(ri′γ − riγ)δi′ j

Ri,B
∆r jγ(k)−∑

jγ

(ri′γ − riγ)δi j

Ri,B
∆r jγ(k)

= ∑
γ

(ri′γ − riγ)

Ri,B
∆ri′γ(k)−∑

γ

(ri′γ − riγ)

Ri,B
∆riγ(k) =−∑

γ

(riγ − ri′γ)

Ri,B
∆ri′γ(k)−∑

γ

(ri′γ − riγ)

Ri,B
∆riγ(k)

=−(~ri−~ri′)

Ri,B
·∆~ri′(k)−

(~ri′−~ri)

Ri,B
·∆~ri(k) =−

RRRi′,B

Ri′,B
·∆~ri′(k)−

RRRi,B

Ri,B
·∆~ri(k) (Ri′,B = Ri,B)ww�

∑
iB

∑
jγ

∂Ri,B

∂ r jγ
∆r jγ(k) =−∑

iB

(
RRRi′,B

Ri′,B
·∆~ri′(k)

)
−∑

iB

(
RRRi,B

Ri,B
·∆~ri(k)

)
=−2∑

iB

(
RRRi,B

Ri,B
·∆~ri(k)

)
, (S5)
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where ∑
iB

(
RRRi′,B

Ri′,B
·∆~ri′(k)

)
= ∑

ii′B

(
RRRi′,B

Ri′,B
·∆~ri′(k)

)
= ∑

i′B

(
RRRi′,B

Ri′,B
·∆~ri′(k)

)
= ∑

iB

(
RRRi,B

Ri,B
·∆~ri(k)

)
. Furthermore,

∑
iB

∑
jγ

∂

∂ r jγ

(
1

R2
i,B

)
∆r jγ(k) = ∑

iB
∑
jγ

(
− 2

R3
i,B

∂Ri,B

∂ r jγ
∆r jγ(k)

)

= ∑
iB
− 2

R3
i,B

(
∑
jγ

∂Ri,B

∂ r jγ
∆r jγ(k)

)

= ∑
iB
− 2

R3
i,B

(
−

RRRi′,B

Ri′,B
·∆~ri′(k)−

RRRi,B

Ri,B
·∆~ri(k)

)
(see Eq. S5)

= 2∑
iB

(
RRRi′,B

R4
i′,B
·∆~ri′(k)+

RRRi,B

R4
i,B
·∆~ri(k)

)
(Ri′,B = Ri,B)

= 4∑
iB

RRRi,B

R4
i,B
·∆~ri(k), (S6)

where similarly ∑
iB

RRRi′,B

R4
i′,B
·∆~ri′(k) = ∑

iB

RRRi,B

R4
i,B
·∆~ri(k). In addition, the µ (x, y or z) component of RRRi,B is Riµ,B =

ri′µ − riµ , and similarly Riν ,B = ri′ν − riν . It follows that

∑
jγ

∂ (Riµ,BRiν ,B)

∂ r jγ
∆r jγ(k) = ∑

jγ

∂ (ri′µ − riµ)

∂ r jγ
Riν ,B∆r jγ(k)+∑

jγ
Riµ,B

∂ (ri′ν − riν)

∂ r jγ
∆r jγ(k)

= ∑
jγ
(δi′ jδµγ −δi jδµγ)Riν ,B∆r jγ(k)+∑

jγ
Riµ,B(δi′ jδνγ −δi jδνγ)∆r jγ(k)

= ∑
j
(δi′ j−δi j)Riν ,B∆r jµ(k)+∑

j
Riµ,B(δi′ j−δi j)∆r jν(k)

=
(
Riν ,B∆ri′µ(k)−Riν ,B∆riµ(k)

)
+
(
Riµ,B∆ri′ν(k)−Riµ,B∆riν(k)

)
=
(
−Ri′ν ,B∆ri′µ(k)−Riν ,B∆riµ(k)

)
+
(
−Ri′µ,B∆ri′ν(k)−Riµ,B∆riν(k)

)
(Riν ,B =−Ri′ν ,B;Riµ,B =−Ri′µ,B)ww�

∑
iB

∑
jγ

∂ (Riµ,BRiν ,B)

∂ r jγ
∆r jγ(k) = ∑

iB

(
−Ri′ν ,B∆ri′µ(k)−Riν ,B∆riµ(k)

)
+∑

iB

(
−Ri′µ,B∆ri′ν(k)−Riµ,B∆riν(k)

)
=−2∑

iB

(
Riν ,B∆riµ(k)+Riµ,B∆riν(k)

)
, (S7)

where similarly, ∑
iB

Ri′ν ,B∆ri′µ(k)=∑
ii′B

Ri′ν ,B∆ri′µ(k)=∑
i′B

Ri′ν ,B∆ri′µ(k)=∑
iB

Riν ,B∆riµ(k), and ∑
iB

Ri′µ,B∆ri′ν(k)=

∑
iB

Riµ,B∆riν(k).
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With Eqs. S4, S5, S6 and S7, we then substitute Eq. S3 into Eq. S2, which yields the Raman tensor element

∆αµν(k) = ∑
jγ

∂

∂ r jγ

{
1
2 ∑

iB

[
α‖,B +2α⊥,B

3
δµν +(α‖,B−α⊥,B)

(
Riµ,BRiν ,B

R2
i,B

− 1
3

δµν

)]}
∆r jγ(k)

=
1
2 ∑

iB

{[
α ′‖,B +2α ′⊥,B

3
δµν +(α ′‖,B−α

′
⊥,B)

(
Riµ,BRiν ,B

R2
i,B

− 1
3

δµν

)]
∑
jγ

∂Ri,B

∂ r jγ
∆r jγ(k)

}

+
1
2 ∑

iB

{
(α‖,B−α⊥,B)∑

jγ

∂

∂ r jγ

(
Riµ,BRiν ,B

R2
i,B

)
∆r jγ(k)

}

=
1
2 ∑

iB

{[
α ′‖,B +2α ′⊥,B

3
δµν +(α ′‖,B−α

′
⊥,B)

(
Riµ,BRiν ,B

R2
i,B

− 1
3

δµν

)]
∑
jγ

∂Ri,B

∂ r jγ
∆r jγ(k)

}

+
1
2 ∑

iB

{
(α‖,B−α⊥,B)

[
1

R2
i,B

∑
jγ

∂ (Riµ,BRiν ,B)

∂ r jγ
∆r jγ(k)+Riµ,BRiν ,B ∑

jγ

∂

∂ r jγ

(
1

R2
i,B

)
∆r jγ(k)

]}

=
1
2 ∑

iB

{[
α ′‖,B +2α ′⊥,B

3
δµν +(α ′‖,B−α

′
⊥,B)

(
Riµ,BRiν ,B

R2
i,B

− 1
3

δµν

)](
−2

RRRi,B

Ri,B
·∆~ri(k)

)}

+
1
2 ∑

iB

{
(α‖,B−α⊥,B)

[
− 2

R2
i,B

(
Riν ,B∆riµ(k)+Riµ,B∆riν(k)

)
+4Riµ,BRiν ,B

RRRi,B

R4
i,B
·∆~ri(k)

]}
(see Eqs. S5-S7)

=−∑
iB

{
RRRi,B

Ri,B
·∆~ri(k)

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(Riµ,BRiν ,B

R2
i,B

− 1
3

δµν

)]}

−∑
iB

{
α‖,B−α⊥,B

Ri,B

[
Riν ,B∆riµ(k)+Riµ,B∆riν(k)

Ri,B
−2

Riµ,BRiν ,B

R2
i,B

RRRi,B

Ri,B
·∆~ri(k)

]}

=−∑
iB

{
R̂RRi,B ·∆~ri(k)

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(
R̂iµ,BR̂iν ,B−

1
3

δµν

)]}

−∑
iB

{
α‖,B−α⊥,B

Ri,B

[
R̂iµ,B∆riν(k)+ R̂iν ,B∆riµ(k)−2R̂iµ,BR̂iν ,B

(
R̂RRi,B ·∆~ri(k)

)]}
, (S8)

where R̂RRi,B =
RRRi,B

Ri,B
is the equilibrium-configuration bond vector normalized to unity, R̂iµ,B is the µ (x, y or z)

component of the normalized bond vector, and Ri,B is the bond length in equilibrium.
For an interlayer shear mode vibrating along the x direction, only the x component of ∆~ri(k) can be non-zero,

which yields

∆αµν =−∑
iB

{
R̂ix,B∆rix

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(
R̂iµ,BR̂iν ,B−

1
3

δµν

)]}

−∑
iB

{
α‖,B−α⊥,B

Ri,B

[
R̂iµ,B∆rixδνx + R̂iν ,B∆rixδµx−2R̂iµ,BR̂iν ,B

(
R̂ix,B∆rix

)]}
=−∑

iB

{
R̂ix,B

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(
R̂iµ,BR̂iν ,B−

1
3

δµν

)]

+
α‖,B−α⊥,B

Ri,B

[
R̂iµ,Bδνx + R̂iν ,Bδµx−2R̂iµ,BR̂iν ,BR̂ix,B

]}
∆rix. (S9)
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As discussed in the main text, for an interlayer vibrational mode in 2D materials, each layer vibrates as an
almost rigid body and thus it can be simplified as a single object, where the structural details of each layer
can be omitted. Subsequently, here i indicates the index of an entire layer instead of any atom within it, and
B indicates a bond connecting from layer i to a neighboring layer i′ in equilibrium. Recalling in the main text
that the change of the polarizability by the shear vibration is ∆α = ∑

i
α
′
ix∆rix, and α ′ix and ∆α are second-rank

tensors. Thus we have ∆αµν = ∑
i

α
′
ix,µν∆rix. Comparing this equation with the above Eq. S9, we arrive at

α
′
ix,µν =−∑

B

{
R̂ix,B

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(
R̂iµ,BR̂iν ,B−

1
3

δµν

)]

+
α‖,B−α⊥,B

Ri,B

[
R̂iµ,Bδνx + R̂iν ,Bδµx−2R̂iµ,BR̂iν ,BR̂ix,B

]}
. (S10)

Similarly for an interlayer breathing mode, only the z component of ∆~ri(k) can be non-zero, and thus we obtain

∆αµν =−∑
iB

{
R̂iz,B

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(
R̂iµ,BR̂iν ,B−

1
3

δµν

)]

+
α‖,B−α⊥,B

Ri,B

[
R̂iµ,Bδνz + R̂iν ,Bδµz−2R̂iµ,BR̂iν ,BR̂iz,B

]}
∆riz. (S11)

Again recalling in the main text that the change of the polarizability by the breathing vibration is ∆αµν =

∑
i

α
′
iz,µν∆riz. Comparing this equation with the above Eq. S11, we arrive at

α
′
iz,µν =−∑

B

{
R̂iz,B

[
α ′‖,B +2α ′⊥,B

3
δµν +

(
α
′
‖,B−α

′
⊥,B

)(
R̂iµ,BR̂iν ,B−

1
3

δµν

)]

+
α‖,B−α⊥,B

Ri,B

[
R̂iµ,Bδνz + R̂iν ,Bδµz−2R̂iµ,BR̂iν ,BR̂iz,B

]}
. (S12)

Eq. S10 and Eq. S12 suggest that α ′ix or α ′iz, the derivative of the system’s polarizability with respect to the layer
i’s displacement along the x or z direction, can be determined by the interlayer bond (length and direction), and
bond polarizabilities.

According to Eq. S1, for the commonly used parallel polarization set-up in the backscattering geometry
z(xx)z̄, only the xx components of the tensors need to be considered (i.e., µ = ν = x). Consequently, we have

α
′
ix,xx =−∑

B

{
α ′‖,B +2α ′⊥,B

3
R̂ix,B +(α ′‖,B−α

′
⊥,B)R̂

3
ix,B−

α ′‖,B−α ′⊥,B

3
R̂ix,B

+2
α‖,B−α⊥,B

Ri,B
R̂ix,B−2

α‖,B−α⊥,B

Ri,B
R̂3

ix,B

}

=−∑
B

{
α ′‖,B +2α ′⊥,B

3
+(α ′‖,B−α

′
⊥,B)R̂

2
ix,B−

α ′‖,B−α ′⊥,B

3
+2

α‖,B−α⊥,B

Ri,B
−2

α‖,B−α⊥,B

Ri,B
R̂2

ix,B

}
R̂ix,B

= ∑
B

Ci,BR̂ix,B, (S13)
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and

α
′
iz,xx =−∑

B

{
α ′‖,B +2α ′⊥,B

3
R̂iz,B +(α ′‖,B−α

′
⊥,B)R̂

2
ix,BR̂iz,B−

α ′‖,B−α ′⊥,B

3
R̂iz,B−2

α‖,B−α⊥,B

Ri,B
R̂2

ix,BR̂iz,B

}

=−∑
B

{
α ′‖,B +2α ′⊥,B

3
+(α ′‖,B−α

′
⊥,B)R̂

2
ix,B−

α ′‖,B−α ′⊥,B

3
−2

α‖,B−α⊥,B

Ri,B
R̂2

ix,B

}
R̂iz,B

= ∑
B

C∗i,BR̂iz,B, (S14)

where the coefficients Ci,B and C∗i,B are related to the properties of the interlayer bond B connecting from layer
i to a neighboring layer i′, such as the interlayer bond length and its x component, and the interlayer bond
polarizabilities and their radial derivatives.

It follows that the change of the polarizability is

∆αxx = ∑
i

α
′
ix,xx∆rix (S15)

by the shear vibrations and

∆αxx = ∑
i

α
′
iz,xx∆riz (S16)

by the breathing vibrations.

S2 The interlayer bonds and polarizability derivatives of each layer

As shown in Figure S2, except that layer 1 and layer N have only one interlayer bond, other interior layers i
have two interlayer bonds: one with the layer above i−1 and the other one with the layer below i+1. For an
interior layer i, the x components of these two normalized bond vectors assume a relation R̂ix,i−1 = R̂ix,i+1 in
(a) AB or AA′ stacking, while R̂ix,i−1 = −R̂ix,i+1 in (b) ABC stacking. In addition, regardless of the stacking
type, for layer i and its neighboring layer j (i−1 or i+1), there is a general relation R̂ix, j =−R̂ jx,i.

For AB or AA′ stacking in Figure S2a, taking 6L as an example, R̂1x,2 = sinθ , R̂2x,1 = R̂2x,3 =−sinθ , R̂3x,2 =

R̂3x,4 = sinθ , R̂4x,3 = R̂4x,5 = −sinθ , R̂5x,4 = R̂5x,6 = sinθ , R̂6x,5 = −sinθ . Thus the polarizability deriva-
tive with respect to the layer i’s displacement along the x direction is α ′1x,xx = CR̂1x,2 = C sinθ = β ,α ′2x,xx =

C(R̂2x,1+R̂2x,3)=−2C sinθ =−2β ,α ′3x,xx =C(R̂3x,2+R̂3x,4)= 2C sinθ = 2β ,α ′4x,xx =−2β ,α ′5x,xx = 2β ,α ′6x,xx =

CR̂6x,5 = −C sinθ = −β . Note that C = C(AB) or C = C(AA′), the coefficient related to the interlayer bond
polarizability and its derivatives in AB or AA′ stacking, respectively. Taking 7L as an example, the inter-
layer bond vectors are not changed for layer 1 to layer 5, but layer 6 has R̂6x,5 = R̂6x,7 = −sinθ , while layer
7 has R̂7x,6 = sinθ . Thus we have α ′1x,xx = β ,α ′2x,xx = −2β ,α ′3x,xx = 2β ,α ′4x,xx = −2β ,α ′5x,xx = 2β ,α ′6x,xx =

C(R̂6x,5 + R̂6x,7) = −2C sinθ = −2β ,α ′7x,xx = CR̂7x,6 = C sinθ = β . In general, for AB or AA′ stacking, due
to R̂ix,i−1 = R̂ix,i+1, α ′1x,xx = β , α ′Nx,xx = β for odd N or α ′Nx,xx = −β for even N, and α ′2x,xx = −2β ,α ′3x,xx =

2β ,α ′4x,xx = −2β ,α ′5x,xx = 2β , ..., where there is a repeated pattern of −2β ,2β for the interior layers. Here
β = β1 for AA′ stacking, while β = β2 for AB stacking.

For ABC stacking in Figure S2b, due to R̂ix,i−1 = −R̂ix,i+1, for an interior layer i, α ′ix,xx = C(R̂ix,i−1 +

R̂ix,i+1) = 0, while for layer 1 and layer N, α ′1x,xx =CR̂1x,2 =C sinθ = β and α ′Nx,xx =CR̂Nx,N−1 =−C sinθ =

−β . Here β = β2 for ABC stacking.
For AA′B′B stacking in Figure S2c, the periodicity corresponds to every four layers, and AA′ and AB

stackings (red and blue colors) alternate. The x components of normalized interlayer bond vectors are R̂1x,2 =
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Figure S2 Schematic of the interlayer bonds in N-layer for (a) AB or AA′ stacking, (b) ABC stacking, and (c) AA′B′B stacking
types. Each layer is simplified as a single object for interlayer vibrations. AB or AA′ stacking repeats every two layer, ABC
stacking repeats every three layers, and AA′B′B stacking repeats every four layers. In (c) AA′B′B stacking, the interlayer bonds
corresponding to AA′ and AB stackings are differentiated by red and blue colors, respectively, indicating that AA′ and AB stackings
alternate.

sinθ , R̂2x,1 = −R̂2x,3 = −sinθ , R̂3x,2 = R̂3x,4 = −sinθ , R̂4x,3 = −R̂4x,5 = sinθ , R̂5x,4 = R̂5x,6 = sinθ , R̂6x,5 =

−R̂6x,7 = −sinθ , R̂7x,6 = R̂7x,8 = −sinθ , R̂8x,7 = −R̂8x,9 = sinθ , ..., where an interior layer i has the same
interlayer bond vectors to layer i+4. Thus

α
′
1x,xx =C1,2R̂1x,2 =C(AA′)sinθ = β1,

α
′
2x,xx =C2,1R̂2x,1 +C2,3R̂2x,3 =−C(AA′)sinθ +C(AB)sinθ =−β1 +β2,

α
′
3x,xx =C3,2R̂3x,2 +C3,4R̂3x,4 =−C(AB)sinθ −C(AA′)sinθ =−β2−β1,

α
′
4x,xx =C4,3R̂4x,3 +C4,5R̂4x,5 =C(AA′)sinθ −C(AB)sinθ = β1−β2,

α
′
5x,xx =C5,4R̂5x,4 +C5,6R̂5x,6 =C(AB)sinθ +C(AA′)sinθ = β2 +β1,

α
′
6x,xx =C6,5R̂6x,5 +C6,7R̂6x,7 =−C(AA′)sinθ +C(AB)sinθ =−β1 +β2,

α
′
7x,xx =C7,6R̂7x,6 +C7,8R̂7x,8 =−C(AB)sinθ −C(AA′)sinθ =−β2−β1,

α
′
8x,xx =C8,7R̂8x,7 +C8,9R̂8x,9 =C(AA′)sinθ −C(AB)sinθ = β1−β2,

...

α
′
Nx,xx = β1(if N = 4m) or β2(if N = 4m+1) or −β1(if N = 4m+2) or −β2(if N = 4m+3), (S17)
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where m is an integer, C(AA′)sinθ = β1, and C(AB)sinθ = β2. Note that for an interior layer i, α ′ix,xx =

−α ′(i+2)x,xx, and thus α ′ix,xx = α ′(i+4)x,xx.
Turing to the z direction (Figure S2), for an interior layer i, the z components of the two normalized interlayer

bond vectors always assume a relation R̂iz,i−1 =−R̂iz,i+1 regardless of the in-plane stacking details. In addition,
regardless of the stacking type, for layer i and its neighboring layer j (i−1 or i+1), there is a general relation
R̂iz, j =−R̂ jz,i. In AB or AA′ or ABC stacking, for an interior layer i, the polarizability derivative with respect
to its displacement along the z direction is α ′iz,xx = C∗(R̂iz,i−1 + R̂iz,i+1) = 0, while for layer 1 and layer N,
α ′1z,xx = C∗R̂1z,2 = C∗ cosθ = γ and α ′Nz,xx = C∗R̂Nz,N−1 = −C∗ cosθ = −γ . Here γ = γ1 for AA′ stacking,
while γ = γ2 for AB or ABC stacking.

However, again for AA′B′B stacking, the situation is more complicated due to the mixture of AA′ and AB
stackings. In specific,

α
′
1z,xx =C∗1,2R̂1z,2 =C(AA′)∗ cosθ = γ1,

α
′
2z,xx =C∗2,1R̂2z,1 +C∗2,3R̂2z,3 =−C(AA′)∗ cosθ +C(AB)∗ cosθ =−γ1 + γ2,

α
′
3z,xx =C∗3,2R̂3z,2 +C∗3,4R̂3z,4 =−C(AB)∗ cosθ +C(AA′)∗ cosθ =−γ2 + γ1,

α
′
4z,xx =C∗4,3R̂4z,3 +C∗4,5R̂4z,5 =−C(AA′)∗ cosθ +C(AB)∗ cosθ =−γ1 + γ2,

α
′
5z,xx =C∗5,4R̂5z,4 +C∗5,6R̂5z,6 =−C(AB)∗ cosθ +C(AA′)∗ cosθ =−γ2 + γ1,

...

α
′
Nz,xx =−γ1(if N = 2m) or − γ2(if N = 2m+1), (S18)

where m is an integer, C(AA′)∗ cosθ = γ1, and C(AB)∗ cosθ = γ2. Note that for an interior layer i, α ′iz,xx =

−α ′(i+1)z,xx and thus α ′iz,xx = α ′(i+2)z,xx.
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Figure S3 Schematic of the vibrations of the interlayer shear (S) and breathing (B) modes from 2L to 6L, derived from the linear
chain model. For these interlayer vibrations, each layer is treated as a single object (the gray sphere), and the blue arrows indicate
both the direction and magnitude of the vibrations of each layer. For NL, there are N−1 S and B modes, where S1 (B1) is the
highest-frequency S (B) mode, while SN−1 (BN−1) is the lowest-frequency S (B) mode.
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S3 Parameter fitting for trilayer MoSe2

As discussed in the main text, for trilayer MoSe2 in AA′B′ stacking, the polarizability change by the shear
vibrations can be derived as follows:

∆αxx(AA′B′,S2) =
√

0.5(β1 +β2); ∆αxx(AA′B′,S1) =
√

1.5(β1−β2).

For 3L MoSe2, the frequencies of the S2 and S1 modes are ω2 ≈ 14 cm-1 and ω1 ≈ 23 cm-1, respectively.

In AA′B′ stacking, we have I(S2) =
n2 +1

ω2
|∆αxx(AA′B′,S2)|2 = 0.5

n2 +1
ω2
|β1 + β2|2 ≈ 0.59|β1 + β2|2 and

I(S1) =
n1 +1

ω1
|∆αxx(AA′B′,S1)|2 = 1.5

n1 +1
ω1
|β1−β2|2 ≈ 0.61|β1−β2|2. Here ni = (eh̄ωi/kBT − 1)−1 is the

Bose-Einstein distribution of phonon occupation at room temperature T = 300K. Based on the experimental
Raman data of bilayer MoSe2,6 we know |β1|/|β2|= 2.32 as mentioned in the main text.

If β1 and β2 are assumed to be real variables as in the common non-resonant Raman modeling, then β1 =
2.32β2 or β1 =−2.32β2. For the former case, we have I(S2)= 0.59|β1+β2|2 = 0.59|2.32β2+β2|2 = 6.50|β2|2,
and I(S1) = 0.61|β1−β2|2 = 0.61|2.32β2−β2|2 = 1.06|β2|2, thereby giving I(S2)/I(S1) = 6.13; for the latter
case, we have I(S2) = 0.59|β1+β2|2 = 0.59|−2.32β2+β2|2 = 1.03|β2|2, and I(S1) = 0.61|β1−β2|2 = 0.61|−
2.32β2−β2|2 = 6.72|β2|2, thereby giving I(S2)/I(S1) = 0.15. Both cases yield very unequal intensities of the
S2 and S1 modes, which are consistent with first-principles non-resonant Raman calculations in Ref. 6.

However, the S2 and S1 modes exhibited nearly equal intensities in the experimental resonant Raman
scattering.6 In reality, the polarizability (or dielectric function) has both real and imaginary parts due to
the light absorption in experimental resonant Raman scattering.7,8 Thus β1 and β2 are complex variables:
β1 = |β1|eiφ1;β2 = |β2|eiφ2 , where φ1 and φ2 are their phase angles, respectively. To have I(S2) = I(S1), we
need 0.59|β1 +β2|2 = 0.61|β1−β2|2, which is

|β1 +β2|2 = 1.034|β1−β2|2 −→
|β1|2 + |β2|2 +β1β

∗
2 +β

∗
1 β2 = 1.034

(
|β1|2 + |β2|2−β1β

∗
2 −β

∗
1 β2
)
−→

2.034(β1β
∗
2 +β

∗
1 β2) = 0.034

(
|β1|2 + |β2|2

)
−→

2.034|β1||β2|
(

ei(φ1−φ2)+ e−i(φ1−φ2)
)
= 0.034

(
|β1|2 + |β2|2

)
−→

4.068|β1||β2|cos(φ1−φ2) = 0.034
(
|β1|2 + |β2|2

)
−→

cos(φ1−φ2) = 0.008
|β1|2 + |β2|2

|β1||β2|
(S19)

With |β1|= 2.32|β2|, we arrive at cos(φ1−φ2) = 0.022, which yields |φ1−φ2| ≈ 88.74◦. This suggests that for
AA′ and AB stackings, their complex interlayer bond polarizabilities and derivatives not only have different
magnitudes, but also have different phase angles in the resonant Raman scattering. Here we assume |β1|= 2.32
and φ1 = 118.74◦, while |β2|= 1.00 and φ2 = 30.00◦ without loss of generality. These parameters give rise to
nearly equal intensities between the S2 and S1 modes for trilayer MoSe2 in AA′B′ stacking.
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