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1. Device fabrications

Monolayer graphene was encapsulated between two relatively thick (typically, >30 nm) crystals of 
hexagonal boron nitride (hBN) by using the dry-peel transfer technique as detailed previously. The hBN-
graphene-hBN stack was assembled on an oxidized Si wafer (300 nm of SiO2) and then annealed at 300 °C 
in a forming gas (Ar-H2 mixture) for 3 hours. As the next step we used the standard electron-beam 
lithography to make a PMMA mask that would define contact regions. Reactive ion etching (Oxford 
Plasma Lab 100) was employed to make trenches in the heterostructure through the mask. The etching 
process was optimized to achieve high etching rates for hBN with respect to both PMMA and graphene. 
We used a mixture of CHF3 and O2 which allowed rates of 300, 60 and 3 nm per min for hBN, PMMA and 
graphene, respectively. Importantly, the PMMA mask was not cross-linked during the etching and 
allowed easy lift-off so that metal contacts could be deposited directly after plasma etching. This 
procedure allowed us to avoid additional processing and, accordingly, contamination of the exposed 
graphene edges. The same etching recipe was later used to define the device geometry. We chose that all 
Josephson junctions made on the same graphene crystal would have the same width W.

Due to the large difference in the etching rates of graphene and hBN, the resulting edge profile was 
found to exhibit a step of, typically, 5 nm in width as depicted schematically in Figure 1(a) of the main 
text. This step developed because graphene effectively served as a mask during etching of the bottom 
hBN, leading to a gradual exposure of graphene buried under the top hBN. In comparison with contacts 
prepared in the same manner but without the highly selective etching, the graphene nanostrip provided 
a notably lower contact resistance (see the section 5 for the discussion of the contact resistance).

For superconducting contacts, we used 50 nm thick films of Nb with an adhesion sublayer of Ta of 5 nm. 
Also, a few nm of Ta were put on top to protect Nb from oxidation. The tri-layer film was deposited by 
radio-frequency sputtering at a base pressure of 10-9 Torr. We have no evidence about the damage 
effect from the RF sputtering to the 1D contacts. Instead, our results demonstrated high quality 
Josephson junctions with optimized contact resistance and enhanced interface transparency.
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2. Characterization of superconducting contacts

As shown in Figure S1, the measured critical temperature of Nb electrode is Tc =7.2 K and the upper 
critical field Hc2 =3.5 T (at T=2 K), which yield the superconducting energy gap  = 1.76Tc  1 meV and the ∆

superconducting coherence length  = (0/2 Hc2)1/2  10 nm, respectively.𝜉

Figure S1. Characterization of superconducting contacts. (a) Normalized resistance of contacts as function 
of temperature at B=0 T. (b) Normalized resistance of contacts as function of perpendicular magnetic 
field at T=2 K.

3. Mobility of encapsulated graphene

In order to characterise the quality of our encapsulated graphene with edge contacts, we fabricate a Hall 
bar device on the same wafer with the Josephson junctions, see Figure S2. 

Figure S2. High mobility encapsulated graphene device with edge contacts. (a) Optical micrograph of 

graphene Hall bar and SGS junctions. The scale bar is 5 μm. (b) Measured longitude resistivity  (black) 𝜌𝑥𝑥

and conductivity  (red) as function of carrier density n of graphene Hall bar at T=10 K. (b) Calculated 𝜎𝑥𝑥

field-effect mobility  at different n.𝜇

The field-effect mobility of graphene  is determined by the -n measurement, as shown in Figure S2 (b). 𝜇 𝜎

At small concentration the slope of -n yields a mobility  ~300,000 cm-2 V-1 s-1 at 10K. The value is in 𝜎 𝜇



agreement with the measured Hall mobility. For typical carrier density n~1012 cm-2, such quality can be 
translated to an elastic mean free path for electron (hole) in graphene by:

                                                                   (s1)𝐿𝑒 = (ℎ/2𝑒)𝜇( 𝑛/𝜋),

where h is the Planck constant, e the elementary charge. In our graphene Hall bar device, Le is about 3 
µm. For SGS junctions, Le is larger than the longest junction length L=1.5 µm and therefore sufficient for 
causing ballistic transport conditions(1).

4. Measurements of Josephson junctions

All electrical transport measurements of our Josephson junctions were performed in a He-3 cryostat 
(Oxford Instruments) for temperature down to 0.3 K. The differential resistance was measured in a quasi-
four-terminal configuration (two superconducting leads for driving current and the other two for 
measuring voltage drop) by combining a preamplifier with low-frequency lock-in technique (f=30 Hz). All 
electrical connections to our sample passed through a cold RC filter (cut-off frequency  5 kHz, Aivon 
Therma) placed close to the sample and an additional ac filter (cut-off frequency  600 Hz, home-made) 
was outside the cryostats. The excitation ac current used here was 2 nA.  

5. Ballistic transport and contact resistance in the normal state

The ballistic nature of our Josephson junctions in the normal state were proved by the observation of 
Fabry-Perot oscillations and the Sharvin resistance as well. For the 0.3 μm junction, Fabry-Perot 
oscillations were clearly observed in negative back gate voltage regime, see the black curve in Figure 
S3(a). For the 1.5 μm junction, due to higher frequencies, the oscillations almost smear in a large range of 
back gate voltage, as shown in main text Figure 1(a). However, if one zooms in Figure 1(a) in the main 
text, clear oscillations appear close to the Dirac point, as shown in the red curve in Figure S3(a). This is 
because when the carrier density is significantly low, the electrons have much longer fermi wavelength 
even comparable to the junction length. 

For a ballistic graphene junction, the measured resistance is given by RN = RSh + 2RC, where RN is the 
normal state resistance, RSh is the Sharvin resistance and RC is the contact resistance per interface. The 

Sharvin resistance RSh can be expressed as , where W the junction width, n the carrier ℎ𝜋/4𝑒2𝑊 2𝜋𝑛

concentration and the number 4 comes from the spin and valley degeneracies of graphene. We plotted 

RSh using the Fermi wavelength  that was calculated from carrier density n induced by gate voltage, 𝜆𝐹

using the standard equation  where the capacitance Cg ~5 x 1010 cm-2/V was determined 𝜆𝐹 = 2𝜋 𝐶𝑔Δ𝑉𝑔

experimentally from the frequency of Shubnikov-Haas oscillations at high n, as shown in dashed blue 
curve in Figure S3 (b). One can see that, both the devices (L=0.3 μm and L=1.5 μm) exhibit almost the 

same RN vs.  curves not depending on the junction length, which means the resistance are only Δ𝑉𝑔

dominated by ballistic transport and contact resistance. Furthermore, both the devices see in Figure S3(b) 
exhibit the same shift in RN upwards with respect to RSh, which indicates a constant resistance 

contribution, 2RC. For electron doping of graphene with >10 V, which corresponds to n=5 x 1011 cm-2, Δ𝑉𝑔

RSh = 27  for our devices with W =6 μm whereas we measured RN = 38 . This yields RC = 5.5  and Ω Ω Ω

contact resistivity of 33 ·μm. We find the same RC for all >10 V. Thus, the quality of our graphene-Ω Δ𝑉𝑔



superconductor interface can also be characterized by their average transmission probability Tr given by 

Tr = RSh/(RSh + RC). For >10 V, we calculate Tr = 0.83. That is, we have highly transparent graphene-Δ𝑉𝑔

superconductor interfaces. 

Figure S3. (a) The Fabry-perot oscillations in the hole regime and (b) Sharvin resistance in the electron 
regime of our 0.3 μm (black)and 1.5 μm (red) junctions. The dashed blue line in (b) is the calculated 
Sharvin resistance. The width of both two junctions is the same 6 μm.

The observed multiple Andreev reflections (MAR) in superconducting state also allow an alternative 
estimate for the interface transparency Tr from the Blonder-Tinkham-Klapwjik model using the 
differential resistance at biases below Δ. In the case of a single NS interface, it is known that the sub-gap 
resistance is half the RN value if Tr = 1 (perfect normal-electron transmission and only Andreev reflections 
at the interface). When a finite barrier strength Z is introduced, sub-gap dV/dI increases and can be 
calculated using this parameter all the way up to the tunnel limit (Tr = 0). In the case of SNS junctions, 
calculations are more complicated and sensitive to employed models. This is particularly valid for wide 
ballistic junctions where gap-less Andreev spectrum has been predicted. It is nevertheless instructive to 
compare the observed MAR behavior with the simplest model. To this end, we focus on the sub-gap 
differential resistance at Vb < 0.3 mV, significantly below Δ/e, where individual Andreev resonances are 
no longer resolved. For 0.3 μm junction in Figure S4(a) yields dV/dI ~ 0.5RN for positive Vg (3 bottom 
curves), and dV/dI ~ 0.8RN for negative Vg, (here RN is determined as dV/dI at large biases Vb > 2Δ/e, 
where its value reaches close to the normal-state resistance measured above TC). Repeating the previous 
analysis, we find Z ~ 0.5 and 0.8, which corresponds to Tr=1/(1+Z2) ~ 0.8 and 0.64 for electron and hole 
doping, respectively. This is in good agreement with Tr = 0.83 found from the normal-state contact 
resistance for electron doping. For 1.5 μm junction, we were not able to observe MAR in electron regime 
and we could not determine Tr for electron doping. For hole doping, as shown in Figure S4 (b) using 
similar analysis, we fund Z ~ 0.8 and Tr=1/(1+Z2) ~ 0.6. 



Figure S4. Multiple Andreev reflections in 0.3 μm (a) and 1.5 μm (b) long junctions. The MAR peaks are 
marked by dashed red lines and 2 ne.Δ/

5. Critical current of long ballistic SGS junctions

A long ballistic junction means the junction length L is smaller than the elastic mean free path Le in 

graphene but larger than the induced superconducting coherence length in ballistic graphene  𝜉𝑏 = ℏ𝑣𝐹/∆

(Le  L ). Here,  is the superconducting energy gap and  is the Fermi velocity in graphene. In our > > 𝜉𝑏  ∆ 𝑣𝐹

longest SGS junction case, L = 1.5 µm, Le   3 µm and   0.5 µm, which implies that our longest junction 𝜉𝑏

is in the limit of long ballistic SGS junctions.

As an important figure of merit, the ICRN product of ballistic SGS junctions was theoretically predicted to 
be a constant of ICRN  2.1 /e, independent of doping and junction length.(2, 3) In main text Figure 3(b) ∆

gives the ICRN product as function of Vg . Away from CNP, IcRn product for each SGS junction holds a ∆

roughly constant value in both electron and hole doping regimes, independent of Vg. However, Figure 
3(b) yields a coefficient of IcRn that is significantly smaller than the theoretical suggestions. For hole 
doping regime, the reduction can be attributed to the presence of p-n junctions. Even for electron doping 
regime with high Tr, we however obtain the maximum ICRN  0.2 /e, which is about ten times smaller ∆

than the theoretical predictions ICRN  2.1 /e. Considering the high quality graphene and transparent G-S ∆

interface in our SGS junctions, such reduction is unexpected. 

Here, we propose a possible explanation for the unexpected small ICRN. The ICRN product of long ballistic 
SGS junction is still dominated by the Thouless energy, Eth.  Despite the overall picture of Thouless energy 
in the ballistic system turns out to be more complex than the diffusive cases when considering physical 
quantities of a different nature. However, Eth remains the characteristic energy for various observables 
that still carrying the appealing significance of an inverse transport time through the system(4). One can 
simply estimate Eth for our ballistic SGS junctions by quantum uncertainty principle Eth , where 𝜏~ℏ

 is the carrier transport time through ballistic junction. Thus, we can obtain the Thouless energy:𝜏 = 𝐿/𝑣𝐹

.                                                                             (s2)𝐸𝑐~ℏ𝑣𝐹/𝐿



For L=1.5 µm ballistic SGS junction, the Thouless energy is   0.4meV, which is much smaller than the 𝐸𝑡ℎ

superconducting energy gap 0.75meV. We can then aggressively assume that when , IcRn ∆ = 𝐸𝑡ℎ ≪ ∆

product is limited by the Thouless energy rather than the superconducting energy gap. To experimentally 

check this assumption, we suggest a much shorter junction of L   to approach  regime, ≪ 𝜉𝑏 𝐸𝑡ℎ ≫ ∆

where ICRN product will be dominated only by  and independent of L.∆

6. Temperature dependence of MAR

We measured the temperature dependence of MAR from 0.3 K to 8 K, as shown in Figure S5(a). We need 
to mention here that several works from other group and our group have shown that for Nb Josephson 
junction, the peaks instead of the dips in the dV/dI~Vb determine the 2Δ/ne due to the small coherence 
length in Nb, as we have discussed in the main text. If the dips are the signatures of MAR, as proposed by 
the referee, then the dip arounds 1 mV should correspond to 2Δ/e not Δ/e because when Vb > 2Δ/e the 
junction is biased to the normal state and the dV/dI is similar to the normal state resistance above TC. 
Thus, we determined the MAR by the peaks in dV/dI. Furthermore, following the referee’s suggestion, we 
extracted the 2Δ/e as a function of T/TC, as plotted in Figure S5(b). As we can see that our experimental 

data fits the BCS calculation ( ) very well. Worth to mention, we have 2∆(𝑇) = 2∆0𝑡𝑎𝑛ℎ 1.74(𝑇𝐶 𝑇 ‒ 1)

measured more than 10 junctions with different length ranging from 0.2 μm to 2 μm, all the MARs 
behave very similar and can be well defined by the peaks of dV/dI instead of the dips. 

Figure S5. (a) Multiple Andreev reflections as a function of temperature. (b) Comparison between the 
extracted 2Δ/e as a function of T/TC from the MARs and the calculated T-dependence of energy gap by 
BCS theory. The error bar is due to fitting.

7. Fraunhofer patterns of critical current at different doping levels

Figure S6 demonstrates another example of Fraunhofer patterns of critical current at different doping 
level. It’s worth to mention here that our junction is in the wide regime, since the junction width W = 6 
μm is significantly larger than the length L = 1.5 μm (W/L ). Furthermore, our junction is also a long ≫ 1

ballistic SGS junction. The junction length is smaller than the electron mean free path Le ( > 3 μm) but 

larger than the superconducting coherence length  0.5 μm (Le > L > ). For such geometry 𝜉0 = ℏ𝑣𝐹 ∆0~ 𝜉0

ballistic SGS junction, the IC exhibits Fraunhofer-like oscillations as a function of the piercing magnetic flux 



 with a period  = h/2e and oscillation minima at integer multiples of the flux quantum : Φ 𝜙0 𝜙0

, where B is the magnetic field and IC0 is the zero-field critical current (5). The IC 
𝐼𝐶(𝐵) = 𝐼𝐶0|𝑠𝑖𝑛⁡(𝜋Φ/𝜙0)

𝜋Φ/𝜙0
|

oscillations in wide and long ballistic graphene junctions have been shown in several experiments (6,7) and 
have been well described by theoretical calculations (8). 

Figure S6. (a) Critical current as function of normalized magnetic flux ( ) at T=0.3K for =-60V. Φ/Φ0 ∆𝑉𝑔

Purple color is the zero voltage drop region, namely the superconducting state. The boundary of purple 
zone indicates the value of IC.  Dashed white curve corresponds to a calculation of a standard Fraunhofer 
pattern. (b) The supercurrent flow extracted from the experimental data using Fourier techniques is 
uniform through the entire SGS junction along the width direction. The red dashed lines define the 
junction width W= 6 µm.

References
1. Mayorov AS, Gorbachev RV, Morozov SV, Britnell L, Jalil R, Ponomarenko LA, Blake P, Novoselov 
KS, Watanabe K, Taniguchi T, Geim AK. Micrometer-scale ballistic transport in encapsulated 
graphene at room temperature. Nano letters. 2011,11(6):2396-9.
2. Cuevas JC, Yeyati AL. Subharmonic gap structure in short ballistic graphene junctions. Physical 
Review B. 2006, 74(18):180501.
3. Titov M, Beenakker CW. Josephson effect in ballistic graphene. Physical Review B. 2006, 
74(4):041401.
4. Altland A, Gefen Y, Montambaux G. What is the Thouless energy for ballistic systems?. Physical 
review letters. 1996, 76(7):1130.
5. Barzykin V, Zagoskin AM. Coherent transport and nonlocality in mesoscopic SNS junctions: 
anomalous magnetic interference patterns. Superlattices and microstructures. 1999, 25(5-6):797-807.
6. Shalom MB, Zhu MJ, Fal’ko VI, Mishchenko A, Kretinin AV, Novoselov KS, Woods CR, Watanabe 
K, Taniguchi T, Geim AK, Prance JR. Quantum oscillations of the critical current and high-field 
superconducting proximity in ballistic graphene. Nature Physics. 2016, 12(4):318-22.
7. Allen MT, Shtanko O, Fulga IC, Akhmerov AR, Watanabe K, Taniguchi T, Jarillo-Herrero P, Levitov 
LS, Yacoby A. Spatially resolved edge currents and guided-wave electronic states in graphene. 
Nature Physics. 2016, 12(2):128-33.
8. Rakyta P, Kormányos A, Cserti J. Magnetic field oscillations of the critical current in long ballistic 
graphene Josephson junctions. Physical Review B. 2016, 93(22):224510.

-60 -30 0 30 60
0

200

400

600

R
 (

)

Vg (V)

T=10K
 0.3m
 1.5m

2𝜇𝑚

Si
SiO2

Vg




