Supplementary information

Real-time monitoring of Trojan horse effect of silver nanoparticles by a genetically encoded fluorescent cell sensor

Fang You, Wenqin Tang, and Lin-Yue Lanry Yung*

ADDRESS: Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore

*Email address: cheyly@nus.edu.sg

Additional experimental data related to UV-vis and DLS data of AgNPs in fresh DMEM medium (Figure S1), SDS-PAGE of the purified MT2a-FRET protein (Figure S2), the complete DNA and protein sequences of MT2a-FRET (Figure S3), confocal images of the MT2a-FRET cell line (Figure S4), changes of intracellular Ag concentrations in MT2a-FRET cells (Figure S5), and AgNPs dissolution in DMEM media with cell culture (Figure S6) are included in supplementary information.

Figure S1. Stabilities of AgNPs in DMEM culture medium. UV-vis absorbance and hydrodynamic size of AgNPs in fresh DMEM medium with 10% FBS were monitored for 120h. Data are shown as mean \pm SD (n=3).

Figure S2. SDS-PAGE of the purified MT2a-FRET protein. Left lane: GeneRular as the protein marker, molecular weight of each band was labelled at left. Right lane: purified MT2a-FRET protein. The purity of the MT2a-FRET protein is > 90 %.

ATGGŢGAGCAAGGGÇGAGGAGCTGŢTCACÇGGGGŢGGTGÇCCATÇCTGGŢCGAGÇTGGAÇGGCGACGTAAACGGÇCACAĢG
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
TTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTG
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
C C C G T G C C C T G G C C C C C C T C G T G A C C C C T G A C C T G G G G C G T G C A G T G C T T C A G C C G C T A C C C C G A C A C A T G A A G C A G 165 170 175 180 185 190 195 200 205 210 215 220 225 220 225 220 225 240
$\label{eq:rescaled} \begin{array}{ c c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $
CACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGTACCATCTTCTTCAAGGACGACGGCAACTACAAG
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
A C C C G C G C G A G G T G A A G T T C G A G G G C G A C A C C C T G G T G A A C C G C A T C G A G G G C A T C G A C T T C A A G G A G G A C G G C 330 335 340 345 350 355 350 355 350 355 350 355 350 355 350 355 350 355 350 355 350 355 350 355 350 355 350 355
<u>\T\R\A\E\V\K\F\E\G\D\T\L\V\N\R\I\E\L\K\G\I\D\F\K\E\D\G </u>
AACATCCTGGGGCACAAGCTGGAGTACAACTACATCAGCCACAACGTCTATATCACCGCCGACAAGCAGGAGAAGAACGGCATC 4i0 4i5 4i0 10 10 10 10 10 10 10 10 10 10 10 10 10
ΔΑ <u>Θ</u> <u>Θ</u> <u>Ο</u>
400 405 500 505 510 515 510 515 540 545 550 555 560 565 X
GGÇGACGĢCCCCĢTGCTĢCTGCÇCGACĄACCAÇTACCŢGAGCĄCCCAĢTCCGÇCCTGĄGCAAĄGACCÇCAACĢAGAAĢCGC
570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 C O C O C
GATCACATGGTCCTGCTGGAGTTCGTGACCGCCGCCGCATGCAT
650 633 660 665 670 675 880 665 660 665 700 715 710 715 720 725 ▷ D 〉 H 〉 M 〉 V 〉 L 〉 L 〉 E 〉 F 〉 V 〉 T 〉 A 〉 A 〉 R 〉 M 〉 H 〉 D 〉 P 〉 N 〉 C 〉 S 〉 C 〉 A 〉 A 〉 A 〉 G 〉 D 〉 S 〉 C
ACCTGCGCCGGCTCCTGCAAATGCAAAGAGTGCAAATGCACCTCCTGCAAGAAAAGCTGCTGCTGCTGCCCTGTGGGGC
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
TGTGCCAAGTGTGCCCAGGGCTGCATCTGCAAAGGGGGCGTCGGACAAGTGCAGCTGCTGCGCCGAGCTCATGGACGGCGGC
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
GTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCCCGACAACCACTACCTGAGC
003 900 900 910 910 920 920 930 940 940 940 950 950 950 970 V Q L A D H Y Q N Y P I G D G P V L L P D N H Y L > S
ΤΑĊĊΑĠŦĊĊĠĊĊĊŢĠAĠĊAAAĠĂĊĊĊĊĂĂĊĠĂĠĂĂĠĊĢĊĠĂŢĊĂĊĂŢĢĠŢĊĊŢĠĊŢĠĊŢĠĂĠŢŢĊĠŢĠĂĊĊĠĊĊĠĊĊĠĠŎŦĊ
975 980 985 990 995 1,000 1,005 1,010 1,015 1,020 1,025 1,030 1,035 1,040 1,045 1,050
$\label{eq:constraint} \begin{array}{ c c c c c c c c c c c c c c c c c c c$
<pre>> Y > Q > S > A > L > S > K > D > P > N > E > K > D > H > M > V > L > L > E > F > V > T > A > A > G > I ACTCTCGGCATGGACGAGCTGTACAAGGGTGGCAGCGGTGGCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTG</pre>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Y Q S A L S K D P N E K R D H M V L L E F V T A A G I ACTCTCGGCATGGACGAGCAGCTGTACAAGGGTGGCAGCGGCGCGCGC
Y Q S A L S K D P N E K R D H M V L L E F V T A A G I ACTCTCGGCATGGACGAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCAG
y y
Y Q S A L S K D P N E K R D H M V L L L X A
Y Q S A L S K D P N E K P N V L L L E F V T A A G I ACTCTCGGCATGGACGAGCTGTACAAGGGCGGGCGCGCGC
Y Q S A L S K D P N E K N V L L E F V T A A G I ACTCTCGGCATGGACGAGCTGTACAAGGGTGGCAGCGGCGAGGGGGGGG

Figure S3. The complete DNA coding sequence and protein sequence of MT2a-FRET.

Figure S4. Images of the live MT2a-FRET cells under confocal microscope (Olympus FV1000 system). Images were taken with 60 × objective lens. (A) ECFP channel (Ex 405nm / Em 461 nm), (B) cpVenus channel (Ex 473nm / Em 527 nm), (C) Bright field channel and (D) FRET channel (Ex 405nm / Em 527 nm). Scale bar represents 40 μm.

Figure S5. Comparisons of the FRET ratio in MT2a-FRET cells incubated with different atomic concentrations of AgNPs or AgNO₃ after (A) 0 h, (B) 6 h, (C) 24 h, and (D) 48 h treatment. The dashed lines represent the standard deviation of the medium group. The intracellular Ag⁺ gradually decreased to the same level for both AgNPs and AgNO₃ treatment, and the intracellular Ag⁺ were gradually diminished after 48 h treatment. Data are shown as mean \pm SD (n=4).

Figure S6. AgNP dissolution in cell culture medium. The cultured medium with 10 μ M AgNPs from the cell FRET experiment was separated from the cells at different time point. Then 1 μ M MT2a-FRET protein sensor was added to the cultured medium, and the FRET ratios were measured. After the measurement, additional 10 μ M AgNO₃ was introduced to each well and the FRET ratios were measured again. The increase of the FRET ratios after AgNO₃ addition indicated that AgNPs in the cultured medium did not fully dissolved to Ag⁺. Data are shown as mean ± SD (n=4).