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Detection of molecules and enzymatic reactions

Figure S1a,b show examples of the YOYO-1 and Cy3 signals from DNA molecules in pits,

and Figure S1c,d show histograms of the mean intensities. Dashed, red lines mark the

cutoff values used for detection of molecules in pits (Figure S1c) and enzymatic reactions

(Figure S1d). The number of counts above the cutoffs are 1156 and 24, respectively.
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Figure S1: (a) Fluorescence images of YOYO-1 and (b) Cy3 signals. Regions used for
measurements of background intensities are marked with green boxes. (c-d) Histograms of
mean intensities of the YOYO-1 and Cy3 signals from individual pits, respectively. Dashed,
red lines mark the threshold values for pit occupancy and enzymatic reactions, respectively.

Occupancy of nanopits

In equilibrium, a DNA molecule may have all its contour length in a single pit or distribute

it over several, neighbouring pits. With the framework developed by Reisner et al. it is

possible to calculate the probability PN that a DNA molecule in equilibrium spans N square

nanopits in a square nanopit array.1 The different configurations are due to the balance

between the free energy of DNA in the nanoslit and in the nanopits. The input parameters

are the contour length of the DNA molecule, its persistence length and effective width, the

height of the nanoslit, and the dimensions and the spacing of the nanopits.1

We minimize the free energy defined in Eqs. (1-7) in Ref. 1 and calculate the occupancy

probabilities PN [Eqs. (8-9) in Ref. 1]. The scaling prefactors in Eqs. (3,5,6) in Ref. 1 are set
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to unity. With our experimental parameters (contour length L = 21µm, persistence length

P = 64nm, height of the nanoslit h = 100nm, side length of pit a = 300nm, pit depth

h = 200mn, distance between pits `=2000 nm-a, and the effective width of DNA w = 9nm),

we find for the 800 and 1000 nm nanopits that P1 = 1. So in equilibrium only a monomer

state is formed for these pit sizes. For the 600 nm pits, we get P1 = 0.93 and P2 = 0.07. So

in equilibrium, a DNA molecule switches between a monomer and a dimer configuration.

Waiting time measurements for 1→ 0 events

Figure S2 shows the fluorescence intensity versus frame number for a single nanopit in a

nanopit array. The intensity increases significantly when a DNA molecule enters the nanopit,

e.g., at frame number 10. A pit is classified as occupied by DNA if the intensity is larger

than a predefined threshold value for at least three consecutive frames. If a molecule enters

an unoccupied pit and then leaves it again, the event is counted as a ‘1 → 0’ event. The

waiting time t1→0 between the molecule enters and leaves the pit is recorded. Measurements

of t1→0 are performed in an array where only a few molecules are present in order to minimise

the number of pits occupied by more than a single molecule. This also reduces the chance

that a molecule replaces another, undetected molecule between two frames.

Based on transition state theory,2,3 we assume that the waiting times t1→0 are exponen-

tially distributed,

p(t1→0) =
exp

(
− t1→0

τ1→0

)
τ1→0

for t > 0, (1)

with a characteristic time scale τ1→0. As we cannot measure the duration of events shorter

than a single time lapse ∆t, we introduce a lower cutoff K = 2∆t. So the measured distri-

bution of waiting times is assumed to follow a truncated exponential distribution,

p(t1→0) =
exp

(
− t1→0−K

τ1→0

)
τ1→0

for t > K, and zero otherwise. (2)
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For N measured events with durations t1→0,i (i = 1, 2, 3, . . . , N), the maximum likelihood

estimator for the characteristic time scale is τ̂1→0 = t̄1→0 − K with t̄1→0 = 1
N

∑N
i=1 t1→0,i.

From the Fisher Information we get the standard error on the estimated parameter τ̂1→0 as

σ̂τ̂1→0 = (t̄1→0 −K)/
√
N .

Figure S3 shows a histogram of waiting times t1→0. The waiting times are consistent with

a truncated exponential distribution with τ1→0 = 26 s, and the p-value for the fit is p = 0.40

(chi-squared goodness-of-fit test).

Events were recorded from measurement series for different pit sizes at various applied

pressure drops. Only measurement series with more than 40 events were further analyzed,

and the value τ̂1→0 and its standard error σ̂τ̂1→0 was calculated for each of them. Figure S4

shows the corresponding p-values for fits to the truncated exponential distributions. Only

results from measurement series that returned p-value greater than 1% (dashed, horizontal

line) were included in Figure 3b in the main text.10 20 30 40 50 60 70 80 90 100
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1Figure S2: Intensity trace for a 1000 nm pit with an applied pressure drop ∆P = 0.3 bar and
a time lapse ∆t = 5 s. Dashed lines show the threshold value used for detection of events.
Here a single 1 → 0 event is detected (filled, blue area). The last increase in intensity is
not counted as an event because the intensity does not drop before the end of the recorded
movie.

Waiting time measurement for 2→ 1 events

Figure S5a shows an intensity trace for a single pit, which is either empty, occupied by a

single DNA molecule, or double-occupied. Figure S5b shows an intensity histogram used to
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Figure S3: Histogram of waiting times for ‘1 → 0’ events for a pit size of 1000 nm and an
applied pressure drop ∆P = 0.35 bar. The total number of events is N = 157, and the
time lapse is ∆t = 5 s. The distribution of waiting times is fitted to a truncated exponential
distribution, see Eq. (2). Red data points mark the expected number of counts in each
bin 〈ni〉 and its standard deviation (

√
〈ni〉) for a truncated exponential distribution with

τ1→0 = 26 s and K = 2∆t. The p-value for the fit is 0.40.
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Figure S4: p-values for fits of the waiting time distributions to truncated exponential dis-
tributions for ‘1 → 0’ events for various values of the applied pressure ∆P . Pit sizes are
600 nm, 800 nm and 1000 nm. Dashed line shows p = 0.01.
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distinguish between the different states. Events where a molecule enters an already occupied

pit and then leaves it again are denoted a ‘2 → 1’ event. These are detected from the

intensity trace. The threshold values (dashed lines in figure S5) ensure that the intensity

corresponds to a whole molecule (intensity between the green and the lower red line) before

and after the event, and two molecules (intensity greater than the upper red line) during the

event. A pit has to be occupied by two molecules for at least three consecutive frames, i.e.,

for 4 s, before the event is counted as a ‘2→ 1’ event.

As for the ‘1→ 0’ events, we assume that the waiting times are exponentially distributed.

We determine the characteristic time scales τ2→1 and the standard errors as outlined for

‘1→ 0’. Figure 3c in the main text shows the characteristic waiting times τ2→1 for 1000 nm

pits for various values of the applied pressure drop ∆P .

Figure S5: (a) Example of an intensity trace for a single pit with three 2 → 1 events
(1000 nm pit, ∆P = 0.3 bar, time lapse ∆t=2 s). Dashed lines indicate the thresholds used
to distinguish between single- and double-occupancy of the pit. (b) Intensity histogram with
thresholds indicated by dashed lines.

Rate of incoming molecules

To simulate the filling of a pit array, we need the rate of incoming molecules rin (see also

the section ‘Simulation of occupancy versus pressure’). This value can be extracted from the

average number of molecules in a row in the array 〈n(t)〉 as the array fills up. The average

is an ensemble average over the rows in the array.
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As an example, Figure S6 shows the average number of molecules per pit in the array

〈n(t)〉/Npits. In this particular case, the experiment corresponds to the array shown in Figure

3a in the main text where only 9 out of 10 identical rows are considered (40 pits long i.e.

Npits = 40). After the onset of the flow at t = 0, we assume that 〈n(t)〉 = rin t.∗ So we

determine rin from the experimental data by estimating the slope of the 〈n(t)〉-curve well

before steady-state.

Figure S7 shows the extracted values for rin for the 1000 nm pit array. We assume that

the rate of incoming molecules is proportional to the flow velocity, and, consequently, the

applied pressure drop ∆P . Thus we fit a straight line to data (dashed line in figure S7).

This linear fit of rin versus pressure drop ∆P is used as input for the simulations.
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Figure S6: Number of molecules per pit in the array of 1000nm pits at ∆P=0.3 bar. We
extract the rate of incoming molecules rin from the mean slope of the linear part of the curve.

Simulation of occupancy versus pressure

We simulate the filling of a row in the nanopit array. The number of pits in the row is Npits,

and each pit can be occupied by at most two molecules. The state of the nanopit row is
∗Note that the number of molecules in the array n(t) is not identical to the number of occupied pits (see,

e.g., Figure 2c in the main text) as the 1000 nm pits can be occupied by more than a single molecule.
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Figure S7: Rate of incoming molecules rin versus applied pressure drop ∆P . Dashed line
shows a linear fit that are subsequently used as input for the simulations of the fractional
fillings of the pit array for different applied pressure drops, see Figure S8.

the number of molecules in the different pits, i.e., (n1, n2, n3, . . . , nNpits
), where ni = 0, 1, or

2, and i = 1, 2, . . . Npits. We simulate the state of the array and extract the number of pits

occupied by at least one molecule nocc(t) , and the total number of molecules in the row

n(t) =
∑Npits

i=1 ni.

At t = 0, the array is empty, so nocc(0) = 0. Molecules enters the row of pits from the

reservoir with a rate rin, leaves a single-occupied pit with a rate r1→0 = 1/τ1→0, and leaves

a double-occupied pit with a rate r2→1 = 1/τ2→1. When a molecule leaves a pit, we assume

that it settles in the next pit downstream occupied by at most a single molecule. If no such

pit is available, the molecule leaves the row of nanopits.

Thus the state of the array can be changed in three ways:

• a molecule enters the row of nanopits from the reservoir,

• a molecule in a single-occupied pit leaves it (i.e., a ‘1 → 0’ event) and moves to the

next pit occupied by at most a single molecule,

• a molecule in a double-occupied pit leaves it (i.e., a ‘2 → 1’ event) and moves to the

next pit occupied by at most a single molecule.

We use the fit in Figure S7 for the rate of incoming molecules rin for the different pressure
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Figure S8: Simulation of the filling of a 1000 nm pit array at ∆P=0.3 bar for a row with
Npits = 40 (small, black data points), and the average over 500 rows (large, black data
points). Dashed line shows (rin t)/Npits. Parameters in the simulation are read off from the
fits in Figure 4c in the main text and Figure S7.

drops ∆P , and similarly we get r1→0 and r2→1 from the fits of the waiting times in Figure 4c

in the main text.

Starting from an empty array, we Monte Carlo simulate the state of the row of pits with

the algorithm described in Ref.4 and record nocc(t). We update the state of the row of pits

until steady state. The time-averaged occupancy at steady-state is denoted n̄∞occ.

Figure S8 shows a simulation of the fractional filling nocc(t)/Npits for a row in an array with

1000 nm pits for a pressure drop ∆P = 0.3 bar. The number of pits in the row is the same as in

the experiment, Npits = 40. Red data points are the average of 500 simulations 〈nocc(t)〉/Npits,

and the horizontal line show the fractional occupancy at steady-state n̄∞occ. The dashed line

is 〈n(t)〉/Npits = (rin t)/Npits, i.e., the normalized expected number of molecules in the row

well before molecules start to leave it. Notice that 〈n(t)〉/Npits > 〈nocc(t)〉/Npits as pits can

be occupied by more than a single molecule.

Figures S9 shows how changing rin, r1→0 and r2→1 affect the fractional occupancy of

a 1000 nm pit array. In an experiment, rin can be changed without changing changing the

applied pressure drop ∆P simply by changing the concentration of molecules in the buffer.
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Figure S9: Simulation of the fractional occupancy at steady state for a 1000 nm pit array
varying (a) the incoming rate rin, (b) the rate r1→0, and (c) the rate r2→1. Full lines corre-
spond to the values read off from Figure 4c in the main text and Figure S7. Dashed curves
are for one parameter varied, while the others are kept fixed.
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