Electronic Supplementary Information for

Scalable Synthesis of SnS₂/S-Doped Graphene Composites for Superior Li/Na-Ion Batteries

Penglun Zheng,^{a,c} Zhengfei Dai,^{b,c,*} Yu Zhang,^c Khang Ngoc Dinh,^c Yun Zheng,^c Haosen Fan,^c Jun Yang,^c Raksha Dangol,^c Bing Li,^d Yun Zong,^d Qingyu Yan, ^{c,*} and Xiaobo Liu^{a,*}

- a. School of Microelectronic and Solid-State Electronic, High Temperature Resistant Polymers and Composites Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 610054, China Email: <u>liuxb@uestc.edu.cn(X. L.);</u>
- b. State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China Email: <u>zfdai@ntu.edu.sg (Z. D.)</u>;
- c. School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore Email: <u>alexyan@ntu.edu.sg</u> (Q. Y.)
- d. Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602

Figure S1. Penglun Zheng et al.

Figure S1. SEM image of commercial SnS₂ powders.

Figure S2. Penglun Zheng et al.

Figure S2. HRTEM image of SnS₂/S-rGO nanocomposites, showing the layered feature of rGO.

Figure S3. Capacitive (red) and diffusion-controlled (blue) contribution to charge storage of SnS_2/S -rGO composite electrode at 0.5 mV s⁻¹.

We have analyzed CV curves and calculated the capacitive contribution at 0.5 mV s⁻¹. The ratios of Li-ion capacitive contribution can be quantitatively quantified by separating the current response i at a fixed potential V into capacitive effects (proportional to the scan rate v) and diffusion-controlled reactions ($k_2v^{1/2}$), according to Dunn:

$$i(V) = k_1 \vartheta + k_2 \vartheta^{1/2}$$

By determining both k_1 and k_2 constants, we can distinguish the fraction of the current from surface capacitance and Li-ion diffusion. Fig. S3 shows the typical voltage profile for the capacitive current (red region) in comparison with the total current. A dominating capacitive contribution (65 %) is obtained for the SnS₂/S-rGO composite electrode.

Figure S4. Penglun Zheng et al.

Figure S4. The initial three discharge/charge profiles of the pure SnS_2 at a current density of 0.1 A g⁻¹.

Figure S5. LIBs rate performance of SnS_2/rGO electrodes at different current densities from 0.1 to 5.0 A g⁻¹.

Figure S6. Penglun Zheng et al.

Figure S6. Nyquist plots of the SnS_2/S -rGO and SnS_2 electrodes in the frequency range from 100 kHz to 10 mHz.

Figure S7. Penglun Zheng et al.

Figure S7. SIBs rate performance of SnS_2 electrodes at different current densities from 0.1 to 5.0 A g⁻¹.