Supporting Information for:

The combination of endolysosomal escape and basolateral stimulation to overcome the difficulties of "easy uptake hard transcytosis' of ligand-modified nanoparticles in oral drug delivery

Yi Cui, Wei Shan, Rui Zhou, Min Liu, Lei Wu, Quan Guo, Yaxian Zheng, Jiawei Wu, Yuan Huang *

Key Laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu 610041, China

Supporting Information Figure S1. The calibration curve of peptide 22 measured by using the BCA protein assay

reagent	
---------	--

The amount peptide detected by	The amount of DSPE-PEG-peptide	Conjugation officiency (0/)	
BCA (mg)	22 conjugates (mg)	Conjugation efficiency (%)	
8.75	31.8	27.5	
12.6	47.1	26.8	
16.3	58.9	28.1	
The mean conjuga	$\textbf{27.5} \pm \textbf{0.65}$		

Supporting Information Table S1	Determination of peptic	de-22 conjugation efficiency
---------------------------------	-------------------------	------------------------------

Note: The peptide-22 conjugation efficiency was calculated as follows: Conjugation efficiency = (the amount

peptide 22 detected by BCA/the amount of DSPE-PEG-peptide 22 conjugates) \times 100

Supporting Information Table S2. Chemicals used to study the intracellular transport of nanocarriers

Chemicals	Function	Mechanism	Concentration
		Ligand for LDL, excessive existence could	
Peptide 22	Competitive inhibitior	compete with other ligands for the binding	2 mg/mL
		with LDLR	
		Ligand for LDLR excessive existence would	
LDL	Competitive inhibitior	compete with other ligands for the binding	100 μg/mL
		with LDLR	
		Mainly transported through LDLR pathway and	
Cholesterol	Competitive inhibitior	excessive existence would compete with other	80µg/mL
		ligands for the binding with LDLR	

	Receptor binding		10 μg/mL	
Heparin	blocker	Inhibiting ligands to interact with LDLR		
Chlorpromazine	Inhibits clathrin-		20	
	mediated pathway	Rho G Pase Inhibition	30 µM	
Hypertonic	Inhibits clathrin-	The dispersion of clathrin lattices on the		
sucrose	mediated pathway	plasma membrane	0.4 M	
Filipin	Inhibits caveolae -			
	mediated pathway	Interacting with cholesterol	500 nM	
		Reversible inhibitors		
Lovastatin	Inhibits caveolae -	of the 3-hydroxy-3-methylglutaryl coenzyme A	10 μg/mL	
	mediated pathway	(HMG-CoA) reductase		
	Inhibits	Lowering submembraneous pH and	_	
Amiloride	macropinocytosis	preventing Rac1 and Cdc42 signaling	12 μg/mL	
	Inhibits macropinocytosis	Inhibiting either phosphoinositide		
Rottlerin		3-kinase (PI3K) or phosphoinositide-specific	10 µM	
		PLC		
	Lysosome-releasing	pH buffering capacity which prevented the	100 µM	
Chloroquine	activity	activity of lysosomal enzymes		
		Interacting with endosomal membranes and		
Hemagglutinin-2	Endosome-releasing	cause a conformational change to a helical		
(HA ₂)	activity	structure which resulted in escape outside of	100 μM	
		endosomal compartments		
	The regulation of			
Metformin	constitutive exocytosis Ac	Activitor of 5'-AMP-activated kinase (AMPK)	1 mM	
	of lipoproteins			
	The regulation of			
AICAR	constitutive exocytosis	Activitor of 5'-AMP-activated kinase (AMPK)	0.5 mM	
	of lipoproteins.			

_

Supporting Information Figure S2. Cell viability after incubation of NPs or tested chemicals in Table S2. The concentration of PLNP and P22NP were selected based on previous study (600 μ g/mL, PLGA concentration). The cells incubated with Hank's balanced salt solution (HBSS) were employed as a negative control and normalized for 100% cell viability. Data are means ± SD (n=3)

Supporting Information Figure S3. (A) & (B) The representative CLSM images of PLNP colocalized with lysosome and late endosome after NPs incubation with the presence of HBSS, chloruquine and HA₂, respectively. The colalization values and line profiles of PLNP were also illustrated.

Supporting Information Figure S4. The effect of chemicals on the exocytosis of NPs (mean \pm S.D., n = 3). In terms of BSA, Ca²⁺ and butyrate groups, the HBSS buffer was additionally containing bovine serum albumin (1% (v/v)), calcium ion (20 μ M) or butyrate (2 mM).

Supporting Information Figure S5. The effects of metformin and HA_2 on the endocytosis of P22NP or PLNP (mean \pm S.D., n = 3).

Supporting Information Figure S6. (A) & (B) The characterization of particles sizes detected by Malvern Zeta size NanoZS90 for PLNP and P22NP, respectively. When both of them loaded with FITC-labeled insulin, there was no significant influence on particle sizes. (C) Zeta potentials detected in distilled water (25 °C, pH 7.0). When P22NP or PLNP loaded with FITC-labeled insulin, there was no significant influence on Zeta potentials.