Heterostructured ZnS/InP nanowires for rigid/flexible ultraviolet photodetectors with enhanced performance

Kai Zhang,^{a,b} Jia Ding,^a Zheng Lou,^a Ruiqing Chai,^{a,b} Mianzeng Zhong,^a and Guozhen Shen^{*a,b}

^a State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

^b College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049,

China

*gzshen@semi.ac.cn

Fig. S1 Schematic diagram of the CVD system used to grow heterostructured ZnS/InP nanowies.

Fig. S2 (a) SEM image of pure ZnS NWs; (b) Diameter of the ZnS NW and the corresponding EDS pattern indexed to Zn and S obviously.

Fig. S3 EDS pattern of the as-synthesized heterostructured ZnS/InP nanowies

Fig. S4 HRTEM image of the heterostructured ZnS/InP NW, forming a clear core/shell structure with a clear boundary between ZnS core and thin InP shells.

Fig. S5. SEM of the as-fabricated heterostructured ZnS/InP NW-based photodetector on a Si/SiO₂ substrate

Fig. S6. (a) I-V curves and (b) SEM image of the photodetectors based on two NWs. Inset: the roughness surface of the NW. (c) I-V curves and (d) SEM image of the photodetectors based on four NWs.

Fig. S7. Band alignment of ZnS/InP core/shell nanowires, which is reported as a reverse type-I heterojunction.

Fig. S8. Optical images of the flexible photodetector under different bent curves.

Fig. S9. (a) Optical image of the bending test system. (b,c) Optical images of the device before and after bending for 1500 cycles. (d) I-V curves of the flexible photodetector before and after bent for 500, 1000 and 1500 cycles.