Iodine induced 1-D Lamellar Self Assembly in Organic Ionic Crystal for Solid State Dye Sensitized Solar Cell

Jayraj V. Vaghasiya,^a Keval K. Sonigara,^a Thomas Beuvier,^b Alain Gibaud,^b Saurabh S. Soni^{a,*}

^a Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar – 388 120, Gujarat, INDIA

^b Institut des Molécules et Matériaux du Mans, Université du Maine, UMR CNRS 6283, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, FRENCE

Electronic Supplementary Information

<u>Content</u>

¹ H-NMR Spectroscopy	Fig. S1
FTIR Spectroscopy	Fig. S2
WXRD for PiHI + 0.05 M I_2 with fitting	Fig. S3
Structure optimization by DFT method	Fig. S4
Method for preparation of Parallel arrangement	Fig. S5
Method for preparation of Perpendicular arrangement	
TEM image of (a) Pure PiHI, (b) 0.04M I ₂ , (c) 0.05M I ₂ and (d) 0.06M I ₂	Fig. S7
Cross-section SEM image of the photoanode with solid ionic conductor PiHI	Fig. S8
XRD pattern of (a) PiHI (with 0.05M I_2), (b) TiO ₂ + SK1 and (c) TiO ₂ + SK1 + PiHI (with 0.05M I_2)	
Assignments of the IR vibration modes of piperidine and PiHI.	Table S1

Fig. S1 ¹H-NMR spectra for PiHI

Fig. S2 FTIR spectra for PiHI

Fig. S3 Simulated XRD pattern for PiHI with 0.05M I₂. Line indicate fitted curve and point indicate experimental points.

Fig. S4 Structure optimization through Density Function Theory (DFT) with basis set, LanL2DZ.

Methods of introduction of electrolyte in device to achieve || and \perp lamellar phases for EIS study:

Here, we have develop the method to arrange the material through gravitational sedimentation in slow evaporation method using modified device fabrication. **Fig. S5** shows the step wise

Fig. S5 Device fabrication for parallel arrangement

Procedure of formation of parallel arrangement represented with cross section of device. We have taken two platinized electrode with one electrolyte containing 0.8 mm two hole inside. Sandwiched device prepare using 60 μ m sealant between them and filled 0.05 M I₂ doped PiHI solution inside in the device (Step-I). Put the device for slow solvent evaporation under vacuum at 60°C temperature results the solid film formation inside which will be in layer by layer fashion. Repeated this procedure for 5-6 time to achieve packed material contacted with both electrodes. Here, based on gravitational sediment forces, the layers are formed parallel to the electrode surface.

Fig. S6 shows the procedure to prepare device which contain the materials layer perpendicular to the electrode surface by viewing the cross section of device. Here, similar procedure repeated with keeping device vertically during the all step. Here, material arrange itself perpendicular to the electrode surface during the solvent evaporation gravitationally.

Fig. S6 Device fabrication for perpendicular arrangement

Fig. S7 TEM image of (a) Pure PiHI, (b) 0.04M $I_2,$ (c) 0.05M I_2 and (d) 0.06M I_2

Fig. S8 Cross-section SEM image of the photoanode with solid ionic conductor PiHI

Fig. S9 XRD pattern of (a) PiHI (with 0.05M I₂), (b) TiO₂ + SK1 and (c) TiO₂ + SK1 + PiHI (with 0.05M I₂), (* indicates Bragg reflections for anatase TiO₂)

Piperidine	PiHI	Assignments
3271	3425	v(N-H)
2924	2847	v (C-H)
2854, 2800, 2731	2862, 2816, 2777, 2716	v as(C-H)
1443	1450, 1420	v (C-C)
1650	1612	δ(N-H)
1319, 1257	1304	Ring breathing bands Aromatic secondary amine

Table S1 Assignments of the IR vibration modes of piperidine and PiHI.