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In this supplementary document, the basic definition of harmonic and anharmonic force constants are first defined. Then

the expressions of symmetry constraints on the harmonic force constants are exemplified, followed by an illustration of

the influence of symmetry constraints on the dispersion relation. The lattice constants and the full-range dispersion of PE

are also given for a deeper insight of the lattice dynamics results. The thermal expansion coefficients of the bulk PE are

calculated at different temperatures to support the ability of the first-principles calculation in recovering the anharmonic

properties. Finally, the convergence of both the bulk crystal and the single-chain PE are carefully verified with the supercell

size, the mesh size, and different approximations for the Dirac delta function.

Lattice dynamics calculations

Upon expanding the total lattice potential energy E to the third
order, the harmonic (@) and cubic anharmonic force constants
(W) are derivatives of E with respect to the atomic
displacement U
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where / and b are the indices of supercell and the atom inside
a unitcell and i, j, k are Cartesian indices. Both ® and ¥ can be
calculated with the finite displacement method by replacing
the partial derivative operators with small finite displacement
in Egs. (S1) and (S2), and E can be accurately predicted using
the first-principles method.

Under the harmonic approximation, the lattice vibrational
dynamical matrix is obtained from the harmonic interatomic
force constants
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where ¢ is the wavevector, R)? is distance between two

atoms. The phonon frequency w and eigenvector e are
obtained by  diagonalizing the  dynamical matrix

D(q)e(ap) =@’ (ap)e(dp) , where p is the phonon polarization

index and each wavevector q and polarization p define a
phonon mode A. The equilibrium phonon Bose-Einstein

occupancy is nj = [exp(ha)/ (ksT) - 1):|71 .

Symmetry constraints on interatomic force
constants

The symmetry constraints on both harmonic and anharmonic
force constants include the permutational, translational,
rotational invariances and point group symmetriesl. In detail,
these symmetry constraints, taking ® for example, are written
as the following:

invariance under any interchange of two indices
@, (Ib.10) =@, (1%.15), (54)

zero force on each atom with any infinitesimal translation of
the whole lattice

> o, (b,IY)=0, (S5)
'y’

zero force on each atom with any infinitesimal rotation of the
whole lattice
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;cp,.j (06,7'D') R, (0b,1'0) — @, (0b,1'') R, (05,1'D') = 0, (S6)

zero torque on each atom with any infinitesimal rotation of the
whole lattice

@, (0b,I'Y')R, (0b,I'Y') R, (0b,I'D")
@, (06,0 R, (0b,1'0') R, (0b,1'D)
and point group and space group symmetries,
@, (M (1b),M (1)) => D, (0b,(I'=1)b')M .M, , (S8)
i

where M is a rotation matrix (e.g. inversion, reflection or
rotation) which would map the whole lattice to itself.

=0, (S7)

It is noteworthy that Eq. (S7) is also included in the Born-
Huang invariance conditions® and yet often neglected in
describing the symmetry constraints. Sharing the same origin
of stress-free equilibrium condition with Egs. (S5) and (56)3,
Eq. (S7) is important and the neglect of it would result in finite
stress in the chain that could disrupt the dispersion relation at
long wavelengths.
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Full-range dispersion relation
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Fig. S1. Dispersion of relation of an individual PE chain (a) before and (b) after
exerting the symmetry constraints in the logarithmic scale.
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Fig. S2. (a) Predicted phonon dispersion of bulk PE crystal along different
directions (b) phonon density of states (D,) of bulk PE, and () phonon dispersion
relation of single-chain PE in full range.

Lattice structure of the bulk PE crystal

The fully relaxed PE crystal has an orthorhombic structure with
the parameters a, b and c¢ being the lattice constants and ¢
being the chain setting angle (the dihedral angle between the
plane of carbon atoms on a single chain and the xz plane). The
predicted lattice parameters are listed and compared with
experiments at different temperatures in Table SI, with the
maximum deviation less than 2%, verifying the accuracy of the
first-principles calculations in predicting the bulk PE crystal
structure.

Table SI. Calculated lattice parameters for the bulk PE, in
comparison with reported experimental results.

Lattice Predicted | Exp. Exp. Exp.
parameter (4 K)4 (10 K)5 (77 K)6
S

a(A) 6.978 7.121 | 7.16 7.155
b (A) 4.854 4851 | 4.86 4.899
c(A) 2.553 2.548 | 2.534 2.547

Thermal expansion coefficient

To verify the accuracy of the potentials used in predicting the
anharmonic properties, the predicted thermal expansion (a) of
the PE crystal is compared with the experiments, since a arises
from the anharmonic lattice vibration. This is realized by
minimizing the Helmholtz free energy with respect to the
lattice parameters. Under the quasi-harmonic approximation
(linear relation of phonon frequency change and lattice
constants), we have
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where S is the compliance tensor, and y, =0lnw, /dlna, is the

diagonal components of modal Gruneisen tensor, which can be
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The anisotropic thermal expansion a is important and derives
from the lattice anharmonicity and with high crystallization
ratio a varying little with the increase in crystallinity at low
temperaturesg. Therefore, despite the lack of k data,
comparisons of the predicted a with low temperature
experiments can help validate the anharmonic potentials used
in the k prediction. Figures S3(a) to (d) show the predicted
directional a compared with  X-ray experimentsm_12 for
temperatures up to 200 K [higher than the sub-glass transition
temperature of high-density polyethylene (~145 K)g]. The
change of directional a with temperature is well captured,
especially along the ab plane. The difference in the axial
direction [Fig. S3(c)] is rather small at temperatures lower than
100 K (but increases at higher temperatures). The predicted
axial a, is negative at temperatures lower than 200 K (tends to
saturate and slightly increase for T > 150 K), but measured
value decrease over the temperature range, and can be due to
the imperfect crystallization of the samples (~70% in Ref. 12).
The taut-tie molecules among microcrystals resemble fully
crystalline PE in thermal expansion behavior at low
temperatures, but lead to contraction of the separation
distance of crystallites when tie molecules vibrate with large
amplitude. This will result in large negative thermal expansion
at temperatures higher than the sub-glass transition point. For
ideal crystal, this secondary effect caused by the tie molecules
does not exist (the predicted axial thermal expansion is higher
than the experiments at around 200 K), but the agreement in
general is good.
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Convergence test for thermal conductivity (bulk
PE)
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Fig. S4. Convergence of axial thermal conductivity at room temperature of bulk PE in
regards to mesh size. Both results of full solution of BTE with the conjugate-gradient
method and the solution with the single-mode relaxation time (SMRT) approximation
are shown.
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Fig. S3. The variations of predicted anisotropic thermal expansion coefficient with
temperatures along axis (a) a, (b) b, and (c) ¢, and (d) plane ab, and compared with

experimental studies from Davis et al. (1970)11, Dadobaev and Slutsker (1981)10 and
White and Choy (1984) 2.

Figure S4 shows the variation of calculated axial thermal
conductivity of bulk PE at room temperature with different mesh
size in the chain direction. All the calculations of bulk PE reached
the given criterion (relative k error < 10'7) in CG iterations within
around 50 steps.

Convergence test for supercell size (chain PE)
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Fig. S5. The dispersion relation for 1-D PE chain along I" to Z direction.

The influence of the supercell size on both the harmonic and
anharmonic force-constant calculations has been carefully tested.
The tests for the harmonic force constants are based on the trends
in the dispersion relation changes. As Fig. S5 shows, the harmonic
dispersion relation calculated from the 1x1x9 supercell resembles
that from 1x1x15, thus considered to be adequate for the lattice
dynamics calculations.

As for the anharmonic force constants, the cost for each expansion
is much higher and thus not feasible. Alternatively, through
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analyzing the force constant-distance behavior, we conclude that
the anharmonic force constants have a decreasing trend which is a
major index for physicality verification. The maximum interacting
distance reaches 7 A, almost reaching the van der Waals limit.
These are shown in Fig. S6. At such a limit, the anharmonic force
constants are around 3 orders of magnitude lower than the
maximum values. Further increase of the supercell hardly increases
the accuracy (but results in larger calculation noises). Therefore, we
conclude that such an expansion for the anharmonic force
constants suffices as well.
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Fig. S6. R? norm of anharmonic force-constants with respect to the maximum distance
in a triplet of atoms.
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Fig. S7. (a) Thermal conductivity of single-chain PE with the iteration step during
the solution of BTE using conjugate gradient technique. (b) Relative error
variance with iteration step.

Dirac Delta function estimation

A precise estimation of the phonon-phonon scattering rates entails
a proper approximation of the Dirac delta function, which is
required to fulfil the energy conservation law during a scattering
event®™, Conventionally, the Dirac delta function is approximated as
a Gaussian function with a finite smearing factor o
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The Dirac delta function appearing in the 3-phonon scattering terms
is implemented by fixing w and varying w'tw", which is treated as a
single parameter w'. However, selecting appropriate mesh size and
the corresponding smearing factor o is tricky, and up until now
there is no rigorous way to select the appropriate combination,
although this is much less challenging for 3-D systems. More
importantly, the results of the single PE chain using the Gaussian
smearing are found quite sensitive to the choice of the smearing
factor even at a large mesh size. So we developed the hyperspace
tetrahedron method based on the linear tetrahedron method™**
for the Dirac delta function.

In the linear tetrahedron method, for a 3D system, the Brillouin
zone is first meshed to a set of tetrahedrons. Heaviside's step
function H(w) is calculated by calculating the filled volume in each
tetrahedron and then the Dirac delta function is obtained by
differentiating H in regard to w. It is known for its dependence with
only the mesh size and the ability to approximate the Dirac delta
function even at a relatively small mesh size without significantly
impairing the accuracyls. As to a 1-D Brillouin zone as that of the

single-chain PE, starting from Ref. 3 the estimation of b‘(a}—a)q)
is
(S12)

(0-0)=Teu, (@)

where g is evaluated on the g-point together with its two neighbors
indexed by j.

lo-o|
5 if min(@;,,) < ® < max(w;,®,)
8as =1 (@ -0, (513)
0 else

There are some difficulties to apply this method in a 1-D mesh.
First, energy conservation may be satisfied intrinsically [i.e., the
denominator wq - w; = 0 in Eq. (S13)], as illustrated by a collinear
scattering event in the three-phonon processes on a linear
dispersion relation (e.g., the longitudinal acoustic branch). Then the
estimated delta function for 1-D mesh from Egs. (S12) and (S13)
might be infinite, while in a 3-D mesh the chance that the four
corners of a tetrahedron have the same frequency is much slimmer.
Another problem with the above estimation is its only dependence
on the gradient of dispersion relation at g-point. Therefore, if there
is an exchange of integration sequence of g and q' in

lexq,ﬁ(wq—a)q,)dqdq', the estimation using the tetrahedron

method leads to 6(a)q - wq,) #* §(a)q, - a)q) . Especially, prominent in

three-phonon scatterings, the asymmetric delta function breaks the
interchangeability of the three phonons in the scattering probability
P/’.. This would further lead to the breakdown of the positive

definite property of the collision matrix*’, which could possibly
result in a false divergent thermal conductivity calculation.

This is solved by realizing the double integration and building a
hyperspace g ® q', which is discretized subsequently in this higher

.”F;,q,é'(a)q - @, )dadd’ >

dimensional space (
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Iq@q,F;,q,é'(a)q—wq,)dSq,q, ). This process theoretically turns the

tetrahedron for a single integration in 3-D space into a 6-symplex (a
counterpart of tetrahedron in 6-D space). Then the 6-symplex
enables interchanging the integration sequence for any two
dimensions and thus the Dirac delta function is symmetric again.
Evaluation of the delta function would be tedious in the 6-D space,
and fortunately the breakdown of asymmetry is not so significant
for a 3-D bulk material. For the 1-D PE chain however, the
hyperspace is only a 2-D space in which the Dirac delta function is
readily and elegantly evaluated.
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Fig. S8. Convergence test of axial thermal conductivity of single-chain PE with
mesh size. Gaussian smearing with different smearing factor (¢) ranging from
0.002 to 0.05 THz are compared with the results using the hyperspace tetrahedron
method (h-thm). The inset is a zoom-in illustration of calculated x with mesh size
using the h-thm method.

Fig. S8 compares the influence of different choices of o on thermal
conductivity estimation of the 1-D PE chain. It is observed that large
o values tend to falsely include more scattering events and thus
underestimate thermal conductivity while too small o values at a
small mesh size overestimate thermal conductivity. Therefore, the
ideal approach is to use an infinitely large mesh size and a smearing
factor approaching 0, which is obviously too time consuming. On
the contrary, as shown in Fig. S8, k of single-chain PE using the
hyperspace tetrahedron method is quite consistency (error < 0.5%)
and reaches the limiting value of Gaussian approximation even at
small mesh sizes. The small variance of k with increasing mesh size
indicates convergence with discretization in the Brillouin zone and
also validates the applicability of the tetrahedron method in the 1-D
PE chain.
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