Supporting Information

Plasmon mediated Fe-O in octahedral site of cuprospinel by Cu NPs

for photocatalytic hydrogen evolution

An Wang,^a Hewei Yang,^b Ting Song,^a Quan Sun,^a Hui Liu,^a Tingting Wang,^{*,a} Heping Zeng^{*,a}

^a Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China

^b The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin,

School of Chemical Engineering and Technology, Tianjin University, Tianjin, China..

Corresponding Author *E-mail: hpzeng@scut.edu.cn. Tel./Fax: +86-20-87112631. *E-mail: ttwang@scut.edu.cn.

Fig S1: XRD patterns of CuFe₂O₄ before and after photoreduction

Fig S2: The light source for the light intensity at 100 mW cm^{-2}

The calculation of quantum efficiency (*QE*)

QE was conducted using the same procedure reported in literature.^[1]

$$QE = \frac{2R_p^r}{R_p^a} \times 100\%$$
$$= \frac{\text{number of reacted electrons}}{\text{number of incident photons}} \times 100\%$$
$$= \frac{2 = \text{r of incident photons} - 45A}{\text{number of incident photons}} \times 100\%$$

$$= \frac{2\nu t N_{\rm A}}{R_p^a} \times 100\%$$

$$R_p^a = \int_{340}^{800} \frac{S \times a \times I \times \lambda}{h \times c}$$

where v is the average hydrogen evolution rate (mol·s⁻¹), t is the irradiation time (s), N_A is Avogadro's constant 6.022×10^{23} (mol⁻¹), I is the light density of incident light (W cm⁻²), S is the irradiation area (cm²), λ is the wavelength of incident light (nm), h is Planck constant 6.626×10^{-34} (J s), and c is the speed of light 3×10^8 m·s^{-1.} a is the light absorption. The light intensity is 100 mW·cm⁻², and the average hydrogen evolution rate v of CuFe₂O₄ and 1.2%Cu/ CuFe₂O₄ were estimated to be 4.5 µmol·h⁻¹ and 22.6 µmol·h⁻¹, and the R^A_p of CuFe₂O₄ and 1.2%Cu/CuFe₂O₄ were determined to be 2.149×10¹⁸ quanta·s⁻¹ and 2.192×10¹⁸ quanta·s⁻¹ thus the calculation was illustrated by the following equation ^[2]:

QE (CuFe₂O₄) =
$$\frac{6.022 \text{ N}10^{23} 3022 \text{ N}10^{-6}/(3.6 10^{3})}{2.149 \times .1^{18}} \times 100\%$$

= 0.069%

QE (1.2%Cu/CuFe₂O₄) =
$$\frac{6.022 \text{ Cu}10^{23} \text{ 3022 } Cu/10^{-6}/(3.6 \text{ 10}^3)}{2.192 \times .1^{18}} \times 100\%$$

= 0.34%

Sample	Cu: Fe (atom ratio)	Cu: CuFe Weight (wt%)	Theoretical Weight (wt%)
CuFe	0.5	0	0
0.6%Cu/CuFe	0.5075	0.38	0.6
1.2%Cu/CuFe	0.514	0.69	1.2
3.1%Cu/CuFe	0.5515	2.67	3.1
6.2%Cu/CuFe	0.6135	5.68	6.2
12%Cu/CuFe	0.7305	10.91	12

Table S1: ICP-AES of CuFe2O4 and different amount Cu NPs on CuFe2O4

Fig S3: The PL spectra of the blank CuFe₂O₄, 1.2%Cu/CuFe₂O₄ and 6.2%Cu/CuFe₂O₄

References:

[1] H. Irie, K. Kamiya, T. Shibanuma, S. Miura, D. A. Tryk, T. Yokoyama, K. Hashimoto, *The Journal of Physical Chemistry C* **2009**, *113*, 10761.

[2] M. Liu, R. Inde, M. Nishikawa, X. Qiu, D. Atarashi, Acs Nano 2014, 8, 7229.