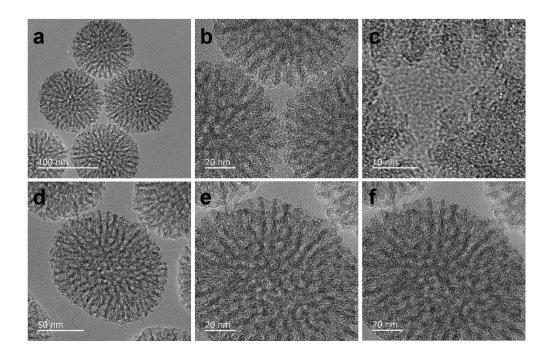
Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Stable Rhodium Single-Site Catalyst Encapsulated within Dendritic Mesoporous Nanochannels

Jun Tian^{a,b}, Dali Yang^{a,c}, Jianguo Wen^b, Alexander S. Filatov^d, Yuzi Liu^b, Aiwen Lei^{a,*}, Xiao-Min Lin^{b,*}

^a College of Chemistry and Molecular Sciences, the Institute for Advanced Studies (IAS), Wuhan University, P.R. China


^b Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

^c Chemical Science and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, U.S.A.

^d Department of Chemistry, University of Chicago, Chicago, IL 60637, U.S.A.

*Correspondence to: <u>aiwenlei@whu.edu.cn</u>, <u>xmlin@anl.gov</u>

Supplementary Informations

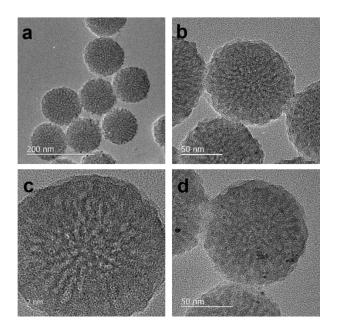


Fig. S1 More detailed characterizations by TEM: TEM images (a to f) of the as prepared Rh₁@MSNS-NH₂, a-c, one particular area zoomed in with different magnification, d-f another area taken with slight different focus depth.

	n Menet annih dan, bil at by dia at a di	the second second second	Λ.,	Au, 1	s 	pectrum 1
0 1 2 Full Scale 72 cts Cursor: 0.000	3 4 5 6	7 8	9	10	11	12 ke\
Element	Weight%	Atomic%				
Si	33.46	23.27				
0	62.20	75.91				

0.82

Fig. S2 EDS spectrum of a selected area in Rh₁@MSNS-NH₂ sample and the corresponding analysis result.

Rh

4.33

Fig. S3. TEM images of the Rh₁@MSNS-NH₂ after serving as catalyst for the reduction of 4-nitrophenol.

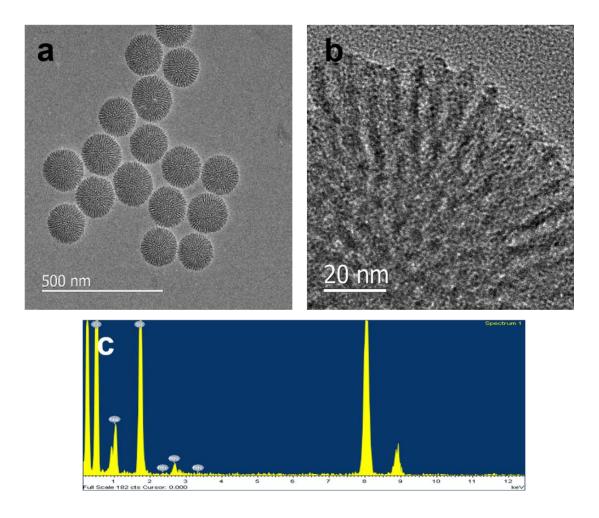
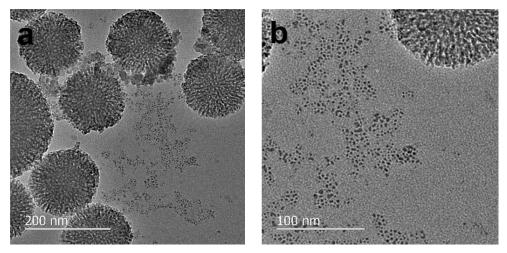
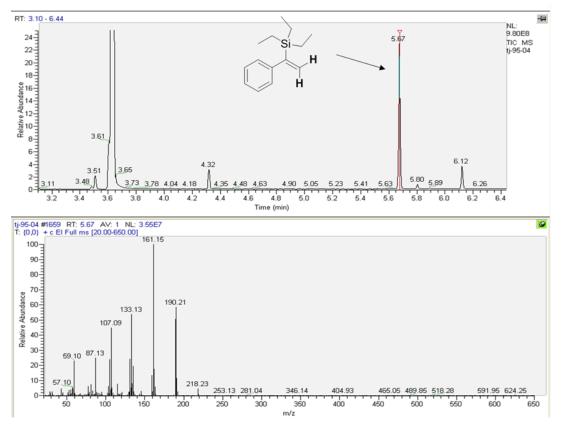
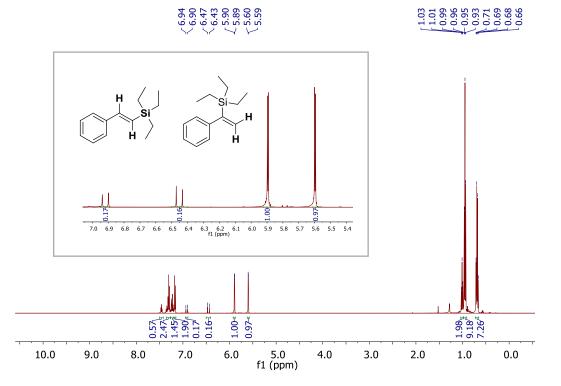
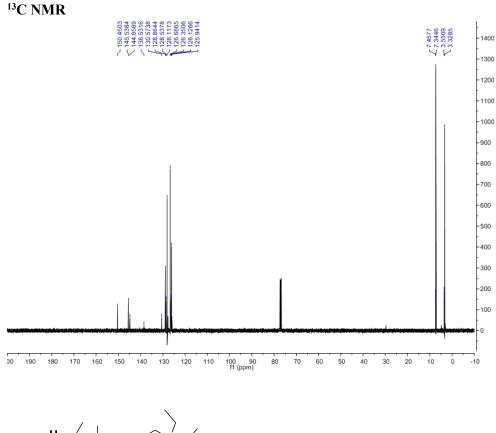


Fig. S4 TEM images and EDX result of the as-prapared Rh/MSNS without surface functionalization.


Fig. S5 TEM images of the Rh/MSNS after serving as catalyst for the reduction of 4-nitrophenol.

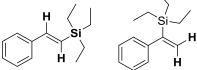


Fig. S6: GC-MS result of the reaction product obtained in the hydrosilylation of phenylacetylene with triethylsilane.

¹H NMR

(E)-triethyl(styryl)silane and triethyl(1-phenylvinyl)silane.

¹H NMR (500 MHz, CDCl₃) δ 7.50 – 7.42 (m, 0.57H), 7.36 – 7.27 (m, 2.47H), 7.27 – 7.19 (m, 1H), 7.17 (dt, J = 3.0, 1.8 Hz, 2H), 6.92 (d, J = 19.3 Hz, 0.17H), 6.45 (d, J = 19.3 Hz, 0.16H), 5.89 (d, J = 3.1 Hz, 1H), 5.60 (d, J = 3.1 Hz, 1H), 1.01 (t, J = 7.9 Hz, 2H), 0.95 (t, J = 7.9 Hz, 9H), 0.69 (q, J = 7.9 Hz, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 150.45, 145.54, 144.86, 138.53, 130.57, 128.86, 128.54, 128.12, 126.69, 126.35, 126.13, 125.94, 7.46, 7.34, 3.55, 3.33.

Fig. S7. ¹H NMR and ¹³C NMR spectra of the hydrosilylation reaction product after purification