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Table S1. Brief overview of advances in electroresponsive drug delivery systems
Material class Carrier material Drug Stimulation 

condition
Advantages Disadvantages References

Sodium alginate/ 
Polyacrylic acid composite

Hydrocortisone  9 V  Biodegradable 
 FDA-approved 

materials

 High voltage 
 Drugs must be 

hydrophilic for 
hydrogel loading

1Swellable hydrogels 

Release mechanism: 
Deswelling of hydrogel 
upon electric stimulation Poly(vinyl alcohol) benzoic acid, 

sulphanilamide
1-5 V (3-5V needed 
for meaningful 
difference)

 Biodegradable 
 FDA-approved 

materials

 High voltage 
 Drugs must be 

hydrophilic for 
hydrogel loading

2

Erodible hydrogels 

Release mechanism: 
Erosion of hydrogel upon 
electric stimulation due to 
local pH changes

Poly(ethyl oxalamine)/ 
Poly(methacrylic acid) or 
Poly(acrylic acid)

 insulin 10 mA  Electrically erodible  High current 
 Non-FDA-approved 

materials (PEOx) 
 Drugs must be 

hydrophilic for 
hydrogel loading

3

Polypyrrole nanoparticles fluorescein, 
daunorubicin, 
piroxicam, insulin

-0.5 V (lowest 
reported)

 Low voltage 
 Generalizable: can 

incorporate drugs of 
varying charge, 
size, and 
hydrophobicity 

 Non-biodegradable 
 Non-FDA-approved 

material

4–6Conducting polymers

Release mechanism: 
Oxidation/Reduction of 
highly conjugated 
backbone of polymer

Graphene oxide / 
Polypyrrole nanocomposite 
films

Dexamethasone -0.5 V  Low voltage  Non-FDA-approved 
material 

 Non-biodegradable 

7
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 Drugs must be 
negatively charged 
for film 
incorporation

PEDOT nanotubes Dexamethasone +1 V  Low voltage  Non-biodegradable
 Non-FDA-approved 

material 
 Drugs must be 

hydrophobic for 
nanotube 
incorporation

8

Biodegradable 
conducting polymers

Release mechanism: 
Oxidation/Reduction of 
highly conjugated 
backbone of polymer 

Films composed of a co-
polymer of aniline and 
polyethylene glycol (PEG) 
or polycaprolactone (PCL) 
linked with ester bonds

Dexamethasone +0.6 V  Low voltage 
 Biodegradable
 Theoretically 

generalizable 
(although system 
has only been 
verified with 
dexamethasone)

 Non-FDA-approved 
material 

 Aniline has 
demonstrated 
toxicity in vivo

9

Prussian Blue 
nanoparticles (+ layer) and 
gentamicin (- layer)

gentamicin +0.5 V (lowest 
reported)

 Low voltage 
 Electrically erodible 
 FDA-approved 

materials

 Not generalizable 
(gentamicin 
incorporation 
depends on the 
electrostatic 
properties specific to 
the drug)

10

Poly(lysine) (+ layer) and 
heparin (- layer)

heparin +1.8 V  Low-voltage 
 Electrically erodible 
 FDA-approved 

materials

 Not generalizable 
(heparin 
incorporation 
dependent on the 
electrostatic 
properties specific to 
heparin )

11

Layer-by-layer films

Release mechanism: 
Induced dissolution or 
destabilization of film 
layers upon electric 
stimulation

poly(beta-amino ester) (+ 
layer), ovalbumin (- layer) 
with graphene oxide & 
reduced graphene oxide 
additives 

ovalbumin +0.4 V  Low-voltage   Non-resorbable 
 Non-FDA-approved 

materials 
 Not generalizable

12



Figure S1. (a) Screen printed electrode with gold working electrode (WE) and silver counter/reference (CE/RE) 
electrode, (b) WE coated with EGT, and (c) WE coated with EGT and CHT.

Figure S2. Cross-section of film near film edge.  The film is thicker near the edges due to the coffee-ring effect 
during dropcasting.



Figure S3. Serum pH before and after electrical stimulation. The overall pH of serum remains unaltered at 7.4 even 
after 5 pulses of -1.5 V for 20 s are applied.
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