Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

On-Demand Electrically Controlled Drug Release from Resorbable Nanocomposite Films

Devleena Samanta[‡], Rohan Mehrotra[‡], Katy Margulis[‡], and Richard N. Zare^{*} Department of Chemistry, Stanford University, Stanford, CA, 94305, USA

[‡]These authors contributed equally to this work.

* Corresponding author email: zare@stanford.edu

Material class	Carrier material	Drug	Stimulation	Advantages	Disadvantages	References
Swellable hydrogels Release mechanism: Deswelling of hydrogel	Sodium alginate/ Polyacrylic acid composite	Hydrocortisone	9 V	 Biodegradable FDA-approved materials 	 High voltage Drugs must be hydrophilic for hydrogel loading 	1
upon electric stimulation	Poly(vinyl alcohol)	benzoic acid, sulphanilamide	1-5 V (3-5V needed for meaningful difference)	 Biodegradable FDA-approved materials 	 High voltage Drugs must be hydrophilic for hydrogel loading 	2
Erodible hydrogels <u>Release mechanism:</u> Erosion of hydrogel upon electric stimulation due to local pH changes	Poly(ethyl oxalamine)/ Poly(methacrylic acid) <u>or</u> Poly(acrylic acid)	insulin	10 mA	• Electrically erodible	 High current Non-FDA-approved materials (PEOx) Drugs must be hydrophilic for hydrogel loading 	3
Conducting polymers <u>Release mechanism:</u> Oxidation/Reduction of highly conjugated backbone of polymer	Polypyrrole nanoparticles	fluorescein, daunorubicin, piroxicam, insulin	-0.5 V (lowest reported)	 Low voltage Generalizable: can incorporate drugs of varying charge, size, and hydrophobicity 	 Non-biodegradable Non-FDA-approved material 	4-6
	Graphene oxide / Polypyrrole nanocomposite films	Dexamethasone	-0.5 V	Low voltage	 Non-FDA-approved material Non-biodegradable 	7

Table S1. Brief overview of advances in electroresponsive drug delivery systems

					• Drugs must be negatively charged for film incorporation	
	PEDOT nanotubes	Dexamethasone	+1 V	Low voltage	 Non-biodegradable Non-FDA-approved material Drugs must be hydrophobic for nanotube incorporation 	8
Biodegradable conducting polymers <u>Release mechanism:</u> Oxidation/Reduction of highly conjugated backbone of polymer	Films composed of a co- polymer of aniline and polyethylene glycol (PEG) or polycaprolactone (PCL) linked with ester bonds	Dexamethasone	+0.6 V	 Low voltage Biodegradable Theoretically generalizable (although system has only been verified with dexamethasone) 	 Non-FDA-approved material Aniline has demonstrated toxicity <i>in vivo</i> 	9
Layer-by-layer filmsRelease mechanism:Induced dissolution ordestabilization of filmlayers upon electricstimulation	Prussian Blue nanoparticles (+ layer) and gentamicin (- layer)	gentamicin	+0.5 V (lowest reported)	 Low voltage Electrically erodible FDA-approved materials 	• Not generalizable (gentamicin incorporation depends on the electrostatic properties specific to the drug)	10
	Poly(lysine) (+ layer) and heparin (- layer)	heparin	+1.8 V	 Low-voltage Electrically erodible FDA-approved materials 	 Not generalizable (heparin incorporation dependent on the electrostatic properties specific to heparin) 	11
	poly(beta-amino ester) (+ layer), ovalbumin (- layer) with graphene oxide & reduced graphene oxide additives	ovalbumin	+0.4 V	Low-voltage	 Non-resorbable Non-FDA-approved materials Not generalizable 	12

Figure S1. (a) Screen printed electrode with gold working electrode (WE) and silver counter/reference (CE/RE) electrode, (b) WE coated with EGT, and (c) WE coated with EGT and CHT.

Figure S2. Cross-section of film near film edge. The film is thicker near the edges due to the coffee-ring effect during dropcasting.

Figure S3. Serum pH before and after electrical stimulation. The overall pH of serum remains unaltered at 7.4 even after 5 pulses of -1.5 V for 20 s are applied.

References

- 1 S. H. Yuk, S. H. Cho and H. B. Lee, *Pharm. Res.*, 1992, 9, 955–957.
- 2 J. Sittiwong, S. Niamlang, N. Paradee and A. Sirivat, *AAPS PharmSciTech*, 2012, **13**, 0–8.
- 3 I. C. Kwon, Y. H. Bae and S. W. Kim, *Nature*, 1991, **354**, 291–293.
- 4 N. Hosseini-Nassab, D. Samanta, Y. Abdolazimi, J. P. Annes and R. N. Zare, *Nanoscale*, 2017, **9**, 143–149.
- 5 D. Samanta, N. Hosseini-Nassab and R. N. Zare, *Nanoscale*, 2016, **8**, 9310–9317.
- 6 J. Ge, E. Neofytou, T. J. Cahill, R. E. Beygui and R. N. Zare, *ACS Nano*, 2012, **6**, 227–233.
- 7 C. L. Weaver, J. M. Larosa, X. Luo and X. T. Cui, *ACS Nano*, 2014, **8**, 1834–1843.
- 8 M. R. Abidian, D. H. Kim and D. C. Martin, *Adv. Mater.*, 2006, **18**, 405–409.
- 9 J. G. Hardy, D. J. Mouser, N. Arroyo-Currás, S. Geissler, J. K. Chow, L. Nguy, J. M. Kim and C. E. Schmidt, *J. Mater. Chem. B*, 2014, **2**, 6809–6822.
- 10 D. J. Schmidt, J. S. Moskowitz and P. T. Hammond, *Chem. Mater.*, 2010, 22, 6416–6425.
- 11 F. Boulmedais, C. S. Tang, B. Keller and J. Vörös, Adv. Funct. Mater., 2006, 16, 63–70.
- 12 M. Choi, K.-G. Kim, J. Heo, H. Jeong, S. Y. Kim and J. Hong, *Sci. Rep.*, 2015, 5, 17631.