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Optical trapping and optical force positioning of two-dimensional
materials

M. G. Donato,∗a E. Messina,a‡ A. Foti,a T. Smart,b P. H. Jones,b M. A. Iatì,a R. Saija,c P. G. Gucciardi,a and
O. M. Maragò∗a

S1 Optical characterization of exfoliated samples

UV-Vis absorption spectroscopy. The hBN, MoS2 and WS2 aqueous dispersions reported in the main text have been studied with
UV-Vis absorption spectroscopy, by means of a Perkin Elmer Lambda 25 UV-Vis spectrometer. In Fig. S1(a), the measured extinction
spectra are shown. The agreement with literature results1,2 can be easily verified.

Raman spectra of drop-casted hBN flakes. Aiming at verifying the effectiveness of the exfoliation process of hBN, a systematic
Raman study on samples obtained by drop-casting the hBN dispersion on a SiO2/Si substrate has been carried out. The results are
summarized in Fig. S1(b). We found that Raman spectroscopy is consistent with the presence of mono- and few-layer flakes in
solution3, even if in measurements on drop-cast samples the highest blue shift (∼ 2 cm−1) is lower than the value (∼ 4 cm−1) found in
the trapping measurements. This could be due to some flake re-aggregation induced by the drop-casting process.

Figure S1: (a) UV-Vis absorption spectra of 2D materials studied in the main text. (b) Raman characterization of hBN flakes drop-casted on a Si
substrate. Exciting wavelength 633 nm.

S2 Optical trapping and metrology of boron nitride

Optical trapping. In optical tweezers, optical forces on the trapped particle due to the interaction with the laser beam can be estimated
by studying the Brownian motion of the particle in the confining optical potential. The corresponding Langevin equation is4:

m
d2

dt2 r(t) =−∇U(r)− γ
d
dt

r(t)+χ(t) (1)

where U(r) is the effective confining potential, γ is the friction coefficient and χ(t) is a random force with the properties of a white
noise, i.e., 〈χ(t)〉= 0 and 〈χ(t)χ(t + τ)〉= 2γkBT , with kB the Boltzmann constant and T the absolute temperature. In this equation, the
particle diffusion, governed by the term γ

d
dt r(t), is limited by the confining potential. In the over-damped regime, i.e., when the friction

is dominant on inertia4, the term on the left of the eq. 1 can be neglected, leaving the overdamped Langevin equation:
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d
dt

r(t) =−1
γ

∇U(r)+ξ (t) (2)

where ξ (t) = χ(t)/γ. In the case of small displacements of the particle in the trap, the confining potential can be considered as harmonic.
In this work, we model our trapped hBN particles as extremely thin disks (of diameter d) parallel to the xz plane (x beam polarization,

z beam propagation). In this case, we have to consider the translational drag coefficient γ⊥ = 16
3 ηd for particle displacements in the x

and z directions (displacements perpendicular to the symmetry axis of the flake), and the drag coefficient γ‖ = 8ηd for displacements
in the y direction5.

The 3D overdamped Langevin equation for a flat spheroidal particle becomes:

dx
dt

=− kx

γ⊥
x(t)+ξx(t) (3)

dy
dt

=−
ky

γ‖
y(t)+ξy(t) (4)

dz
dt

=− kz

γ⊥
z(t)+ξz(t) (5)

where kx, ky and kz are the trap spring constants in the x, y and z directions, z being the beam propagation direction.
The main goal of optical trapping experiments is to recover, from the tracking of the particle fluctuations in the trap, the trap spring

constants ki and the conversion factors βi between experimental units of the tracking signal (volts) and physical distance (µm). Various
techniques can be used4; here, we will discuss the method of the particle position autocorrelation functions (ACFs) and, for the sake of
simplicity, we will specify the analysis for one direction, x.

The particle position autocorrelation function Cxx in the x direction is:

Cxx(τ) = 〈x(t)x(t + τ)〉 (6)

By using the overdamped Langevin equation, we find that

Cxx(τ) = 〈x(t)x(t + τ)〉=Cxx(0)e−ωxτ =
kBT
kx

e−ωxτ (7)

where

ωx =
kx

γ⊥
(8)

is the ACF relaxation frequency and the amplitude of the last term can be obtained by the equipartition theorem4. Thus, by fitting the
ACF with a single exponential decay, we may calculate the trap spring constant. However, the detector used to track the particle dis-
placements records voltage signals Vx(t) = βxx(t), and, thus, we have to calibrate the trap in order to find the voltage/length conversion
factor βx

CV
xx(τ) = β

2
x Cxx(τ) = β

2
x

kBT
kx

e−ωxτ (9)

Thus, from the fit of the voltage autocorrelation function we obtain both the trap spring constant kx and the voltage/length conversion
factor βx provided the knowledge of the corresponding damping coefficient. In the case of a spherical particle in 3D, all the formalism
can be generalized to obtain the trap spring constants ki and the corresponding conversion factors, provided that the drag coefficient is
known. In the case of a non-spherical particle, a modelization of the particle shape must be used, in which different drag coefficients for
translations in direction parallel and perpendicular to the particle symmetry axis, γ⊥ and γ‖, and for rotations, are considered. This has
been already shown for 1D particles such as carbon nanotubes6 or 2D graphene flakes5 or even plasmonic silver nanoplatelets7. Also
in these cases, the particle relevant size parameters (tube length or flake diameter) are generally measured independently and used to
estimate the drag coefficients.

Flake metrology. As outlined above, the measurements of the trap force constants and the reconstruction of the Brownian motion
generally require the knowledge of the size and shape of the trapped particle. If the particle size is not known, Eqs. 8 and 9 alone are
not enough to calibrate the trap, and a third equation for the drag coefficients of the particle is needed. To this aim, we can use the
method of the drag force, outlined in refs.8,9.

We used a nanopositioning system (Mad City Labs Nano-LP200) giving a controlled sinusoidal oscillation to the microscope stage

x(t) = Astagesin(ωstaget) (10)
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Figure S2: (a-c) Signal autocorrelation functions obtained by setting a 5 Hz sinusoidal oscillation along the x, y and z directions. (d-f) Measurements
of the hBN flake diameter obtained by using the drag force method as explained in the main text. The mean flake size obtained by averaging all the
measurements is shown in Fig. 2d of the main text.

where Astage is the oscillation amplitude and ωstage is the oscillation angular frequency. In this case, the fluid velocity is

v f luid = vstage = Astageωstagecos(ωstaget) (11)

and a trapped particle is subjected to a drag force

Fdrag =−γ⊥vstage =−γ⊥ωstageAstagecos(ωstaget) (12)

When the fluid velocity is lower than the escape velocity of the particle from the trap, the optical restoring force kx is in equilibrium
with the maximum drag force and then

kxaV = βxγ⊥ωstageAstage (13)

where βx is the same voltage/length calibration factor seen in eq. 9 and aV is the detector voltage signal corresponding to the particle
displacement in the trap.

If a trapped particle is subjected to an oscillation, its displacement can be written as10

Sx(t) = xV (t)+aV sin(ωstaget) (14)

Its autocorrelation function can be fitted with the sum of one (or two, if the particle is not spherical, to take into account rotational
fluctuations5,10) exponential decay and a cosinusoidal modulation10

CV
xx(τ) = Ae−ωxτ +

a2
V
2

cos(ωstageτ) = β
2
x

kBT
kx

e−ωxτ +
a2

V
2

cos(ωstageτ) (15)

Thus, from the fit of the particle ACF, and in particular, from the value of the amplitude of the cosinusoidal modulation, we can calculate
the quantity to be put in eq. 13. Thus, we have the absolute calibration of the trap, because, comparing eqs. 8 and 13, we obtain

βx =
ωxaV

ωstageAstage
. (16)

From the fit of the ACF, we obtain A and, thus,
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Figure S3: Scattering force (black curve) and gradient force (red curve) calculated in the direction of the beam propagation for the 2D materials
studied in this work. In hBN Fgrad is always greater than Fscatt , allowing the particle trapping. Data have been normalized for the laser power. Excitation
wavelength 785 nm.

kx = β
2
x

kBT
A

. (17)

Finally, from the fit we obtain also ωx and, thus, γ⊥ = kx/ωx and the particle size, d. Thus, once we obtain the drag coefficients, the flake
lateral size, d, can be estimated for each measurement. In Fig. S2(a-c) some typical ACFs obtained on a trapped flake along the three
spatial directions are shown, together with the (Fig. S2(d-f)) estimate of the flake lateral size d obtained for each direction by trapping
several flakes. The mean flake size obtained by averaging on all the measurements is shown in Fig. 2d of the main text.

S3 Calculation of optical forces in the dipole approximation

To understand the different trapping/pushing behaviour observed in our exfoliated samples, we calculated optical forces in the dipole
approximation4. The following calculations are based on two approximations: i) we consider particles that are sufficiently smaller
than the trapping wavelength; ii) we consider an effective Gaussian beam with a waist matched to the diffraction limited spot. While
both conditions can have some limitations in our experiments, these calculations provide a simple and easy way to show the different
optomechanical response for the different material flakes.

The radiation force due to a Gaussian beam of power P and waist w0, propagating in the z direction, on a particle having size much
smaller than the radiation wavelength and immersed in a medium with refractive index nm, is:

~Frad =
nm

2
Re{α}

cεm
~∇I +

nmσext

c
Iẑ (18)

where Re{α} is the real part of the particle polarizability, σext the extinction cross section, c the speed of light and I = 2P
πw2

0
the incident

light intensity in the medium. The first term in the right hand side of Equation 18 gives the gradient force Fgrad , that confines the
particle in the focal spot if the particle refractive index is higher than that of the medium4. The second term is the scattering force Fscatt ,
that pushes the particle along the beam propagation. Optical trapping occurs when gradient forces are larger than scattering forces.

Our flakes are modeled as oblate spheroids with 100 nm diameter and 6 nm thickness. As such, the modified Clausius-Mossotti
expression in the static limit for the particle polarizability11 is given by:

αi =V εm(
εm

εp− εm
+Li)

−1 (19)

with V the spheroid volume, εp its complex permittivity, and Li the spheroid geometrical factors with respect the principal axes i = 1,2,3.
The choice of which geometrical factor to use in the calculation of the polarizability and, thus, the optical forces, depends on the
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alignment of the particle with respect the field polarization. In our calculation, we have considered that the particle long axes a1 and a2

are directed with the field polarization x and the beam propagation z, respectively. In this case, the gradient force along the z direction,
considering I(z) = I

1+ z2

z2
R

will be:

Fgrad =−nmα2I
cεm

z
z2

R

(
1+

z2

z2
R

)−2

(20)

where zR =
nmπw2

0
λ

is the Rayleigh range. For the evaluation of the waist, we used w0 ∼ 1.5 ·0.61 λ

NA nm
, with λ the excitation wavelength

in vacuum, 0.61 λ

NA nm
the Abbe criterion for the focal spot radius in the diffraction limit. The prefactor 1.5 is introduced to take in

account the polarization asimmetry of the focal spot12.

To evaluate the scattering force, we need to calculate the extinction cross section σext as a sum of scattering and absorption terms4:

σext =
k4

6πε2
0
|α|2 + k

ε0
Im{α} (21)

where k = 2πnm
λ

is the wavevector.

The material permittivity εp has been calculated at three different wavelengths (638 nm, 785 nm and 830 nm) by referring to
published results regarding the real (n) and imaginary (κ) parts of the 2D material refractive indexes3,13,14. We have found that in
hBN, Fgrad is greater the Fscatt at each wavelength considered, allowing the particle trapping. On the contrary, in MoS2 and WS2, Fscatt

is always greater than Fgrad , hindering the trapping. In Fig. S3, the comparison between Fgrad and Fscatt is shown at 785 nm exciting
wavelength.

S4 Optical forces in the T-matrix formalism for non-spherical particles

Optical forces and torques are calculated by solving the light scattering problem in the T-matrix approach15,16. We model our layered
material flakes as planar cluster particles illuminated by the optical tweezers tightly focused beam (objective lens with NA=1.3).
First, the focal optical fields of the optical tweezers are calculated in the absence of any particle by means of the angular spectrum
representation in the original formulation by Richards and Wolf12,17–19. These focal field components are the incident fields to be used
in the T-matrix formulation of the scattering problem. Thus, the radiation force and torque exerted on a particle within the focal region
is obtained by integrating the time-averaged Maxwell stress tensor4,19:

Frad = r2
∮

Ω

TM · r̂dΩ , (22)

TRad =−r3
∮

Ω

(
TM× r̂

)
· r̂dΩ , (23)

where the integration is over 4π, r is the radius of a large sphere surrounding the particle, and TM is the time-averaged Maxwell stress
tensor in the Minkowski form in a homogeneous, linear, and nondispersive medium4 (water in our specific case):

TM =
1
2

εmRe
[

E⊗E∗+
c2

n2
m

B⊗B∗− 1
2

(
|E|2 + c2

n2
m
|B|2

)
I

]
, (24)

where E and B are the phasors of the total fields, ⊗ indicates dyadic product, I is the dyadic unit, εm is the dielectric permittivity of the
medium, and nm is the refractive index of the medium. The total fields are the superposition of incident and scattered fields, E = Ei+Es

and B = Bi +Bs. Hence the radiation force and torque are expressed as4,19,20:

Frad =−
1
4

εmr2
∮

Ω

[
|Es|2 +

c2

n2
m
|Bs|2 +2Re

{
Ei ·E∗s +

c2

n2
m

Bi ·B∗s
}]

r̂dΩ . (25)

TRad =−
εmr3

2
Re
{∮ [

(r̂ ·E)(E∗× r̂)+
c2

n2
m
(r̂ ·B)(B∗× r̂)

]
dΩ

}
. (26)

We note that while for the case of the optical force we can use the far-field expression of the fields and scattering amplitude19, the
calculation of the optical torque is more complex since it must include longitudinal terms in order to have a non-vanishing result20.
We then expand the incident and scattered fields in vector spherical harmonics regular at the origin, Bessel J-multipoles, and regular
at infinity, Hankel H-multipoles, respectively. The amplitudes of the incident fields expansion, W (p)

i,lm, are known through the calculation

of the focal fields, while the amplitudes of the scattered fields expansion, A(p′)
s,l′m′ , are related to the incident amplitudes through the

elements of the T-matrix, T (p′p)
l′m′lm:

A(p′)
s,l′m′ = ∑

plm
T (p′p)

l′m′lm W (p)
i,lm , (27)
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with the indices p = 1,2 indicating the parity of the multipoles, and the indices l = 0,1, ... and m =−l, ...,0, ..., l, related to their angular
momentum. By imposing the field boundary conditions across the particle surface we obtain a linear system whose matrix can be
inverted to obtain the elements of the T-matrix. The optical force and torque components are finally calculated by a projection of each
vector onto each coordinate unit vector and calculating the corresponding numerical integral19,20.

To model our layered material flakes we consider a planar cluster composed by N (homogeneous) spheres of radius aα and refractive
index nα (corresponding to the complex refractive index of each layered material), with α = 1, ..., N, surrounded by a medium (water)
with refractive index nm. The spheres are centered at Rα with respect to the common origin O. The field scattered by the whole
aggregate is the superposition of the fields scattered by each sphere15,16, i.e.,

Es(r) =
N

∑
α=1

∑
plm

A
(p)

s,αlmH(p)
lm (nmk0rα , r̂α ) , (28)

where rα = rα r̂α = r−Rα , A
(p)

s,αlm are the translated amplitudes and k0 is the wavenumber in vacuum. The field inside the α-th sphere
is expanded as

Ep,α (r) = ∑
plm

W
(p)

p,αlmJ(p)
lm (nα k0rα , r̂α ) , (29)

so that it is regular everywhere inside the sphere. The scattered field is given by a linear combination of multipole fields that have
different origins, whereas the incident field is given by a combination of multipole fields centered at the origin of the coordinates. Since
we must impose the boundary conditions at the surface of each sub-unit sphere, we use the addition theorem4,21 for multipole fields
to express the incident and scattered field at the surface of the α-th sphere. Applying the boundary conditions, we get four equations
for each α, l and m among which the elimination of the amplitudes of the internal fields yields as final result a system of linear non-
homogeneous equations for the shifted incident and scattered amplitudes16, W

(p)
i,αlm and A

(p)
s,αlm. Thus, the addition theorem allows us

to write the scattered field by the whole aggregate in terms of multipole fields with common origin at O through the application of the
matrix that translates the origin of the H-multipole fields from Rα ′ to the common origin of the coordinates at O.

We used this general cluster model to calculate the light scattering process, optical forces and torques for our layered material flakes
modeled as planar dielectric clusters. We considered cluster of increasing lateral size, d, composed of spherical sub-units of 10 nm
radius. Figure 3 in the main text shows the results for optical trapping efficiencies, Qx, Qy, and Qz, for a flake with the same planar
structure but optical properties of hBN, MoS2, and WS2.

We note that the solution of the light scattering problem for a cluster and the evaluation of its T-matrix is related with the inversion of
a complex matrix that, in principle, has infinite elements. As typical in this situation, we truncate the multipole expansion to some finite
multipole order lT, which is chosen to ensure, at a reasonable computational effort, the numerical stability of the calculated observables
(e.g., cross-sections, optical forces, and optical torques). In practice, we check computationally for the existence of a minimum l-value,
lM such that when lT > lM the observable quantities do not change within numerical accuracy. Thus, for a cluster of N spheres, a matrix
of order dim = 2NlT(lT +2) needs to be inverted. The truncation order to be considered in the multipole expansion of a cluster depends
not only on the individual particle size, but also on the geometrical packing in the aggregate. As a rule-of-thumb we can consider the
smallest sphere of radius Rcluster that includes the whole cluster with a corresponding size parameter xcluster = 2πRcluster/λ and truncate
the expansion at lT > xcluster. However, we verified that all our results are convergent within 0.1%.
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Figure S4: Raman spectra obtained on bulk MoS2 (a) and under laser pushing of exfoliated MoS2 at 785 nm (b). In (a), a long-working distance x50
objective (NA=0.5, laser power 0.6 mW) has been used, while in (b) a x100 oil immersion objective (NA=1.3, laser power 9.6 mW) has been used. In
(b), a strong Raman peak at approximately 234 cm−1 can be associated to a longitudinal acoustic phonon that becomes Raman active due to
presence of defects from the edges of the MoS2 flakes.

S5 Raman spectroscopy of pushed MoS2 at 785 nm

In the main text, the aggregation process of MoS2 flakes under laser pushing at 638 nm is followed by studying the time evolution of
the Raman spectrum. Here, a similar study is carried out under laser pushing at 785 nm (see Fig. S4). As it is sketched in the main
text, in this spectrum, shown in Fig. S4(b), the most evident feature is a band at approximately 234 cm−1, that is consistent with the
presence of defects at the edge of our exfoliated flakes22.

S6 Supplementary videos

The supplementary video 1 shows the 2D confinement of MoS2 flakes when the laser beam is focused near the microscope slide (top)
surface. In particular, we observe that the flakes are pushed towards the top surface and are trapped against the it, since the transverse
gradient forces confine them in the laser spot. However, when the laser is off, the particles are free to move and disperse in the medium.

The supplementary video 2 shows that higher power, the flakes are temporarily stuck to the surface, but the aggregate is unstable.
Furthermore, thermal effects such as the creation of bubbles in the host medium are observed, due to material absorption.

The supplementary video 3 shows the optical force positioning of MoS2 flakes with BSA using a Laguerre-Gauss beam with l = 30.
Orbiting of the flakes around the LG beam is observed at the beginning of the video due to the transfer of orbital angular momentum
from the light to the flakes.
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