Supplementary Information

Two-Dimensional Transition-Metal Dichalcogenides-Based Ferromagnetic van der Waals Heterostructures

Juan Du, Congxin Xia,^{a,*} Wenqi Xiong,^a Tianxing Wang,^a Yu Jia,^b and Jingbo Li^{c,*}

^aDepartment of physics, Henan Normal University, Xinxiang 453007, China. ^bKey Laboratory for Special Functional Materials of Ministry of Education, Henan University, Kaifeng 475004, China ^cInstitute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China

E-mail: xiacongxin@htu.edu.cn and jbli@semi.ac.cn

Table S1 Calculated lattice constants a and *b*, binding energy E_b , interlayer distance *d*, magnetic moments M, work function W, spin-up band gap E_{g-up} , spin-down band gap E_{g-down} , conduction band offset ΔEc and valence band offset ΔEv with spin-up and spin-down channels using the hybrid HSE06 functional for MoS₂, WS₂, VS₂ monolayers and MoS₂/VS₂, WS₂/VS₂ heterostructures with and without the SOC effects.

		MoS₂	₩S₂	VS ₂	MoS_2/VS_2	WS_2/VS_2
a=b (Å)		3. 183	3. 182	3. 17	3. 179	3. 178
E _b (mo	E _b (meV/Å ²)		-	-	-84. 589	-119. 766
d (Å)		-	-	-	3. 085	3. 043
M(µ _в)		0	0	1	0. 905	0. 898
W (eV)		5.93	5. 73	6.77	5.96	5. 78
Eg-up (eV)	without SOC	2. 143	2. 305	1. 117	0. 418	0. 196
	with SOC	2.04	2. 02	1. 116	0. 442	0. 202
Eg-down (eV)	without SOC	2. 143	2. 305	1. 985	0. 949	0. 730
	with SOC	2.04	2. 02	1. 116	0. 442	0. 202
ΔE _{C-up} (eV)	without SOC	-	-	-	1. 455	1.868
	with SOC	-	-	-	1. 397	1.811
ΔE _{V-up} (eV)	without SOC	-	-	-	0. 638	0. 832
	with SOC	-	-	-	0. 659	0. 868
ΔE _{C-down} (eV)	without SOC	-	-	-	1.114	1. 487
	with SOC	-	-	—	1. 397	1.811
ΔE _{V-down} (eV)	without SOC	-	-	-	1.063	1. 243
	with SOC	-	-	-	0. 659	0. 868

E-field (V/Å)	MoS	₂ /VS ₂	WS ₂ /VS ₂		
	d _{Mo-S1(S2)(Å)}	d _{V-S1(S2)(Å)}	d _{W-S1(S2)(Å)}	d _{V-S1(S2)(Å)}	
-0.7	2. 411 (2. 409)	2. 359 (2. 360)	2. 412 (2. 413)	2. 359 (2. 359)	
-0.6	2.410(2.409)	2. 359 (2. 359)	2. 412 (2. 413)	2. 359 (2. 359)	
-0.5	2. 410 (2. 409)	2. 360 (2. 359)	2. 412 (2. 413)	2. 360 (2. 359)	
-0.4	2. 410 (2. 410)	2. 360 (2. 358)	2. 411 (2. 413)	2. 361 (2. 358)	
-0.3	2. 409 (2. 410)	2. 361 (2. 358)	2. 411 (2. 414)	2. 361 (2. 358)	
-0.2	2.409(2.409)	2. 361 (2. 357)	2. 411 (2. 413)	2. 362 (2. 357)	
-0.1	2. 409 (2. 410)	2. 362 (2. 357)	2. 411 (2. 413)	2. 362 (2. 357)	
0	2. 408 (2. 410)	2. 362 (2. 356)	2. 410 (2. 414)	2. 362 (2. 356)	
0.1	2. 408 (2. 410)	2. 362 (2. 356)	2. 410 (2. 414)	2. 363 (2. 356)	
0.2	2. 407 (2. 411)	2. 363 (2. 355)	2. 410 (2. 414)	2. 363 (2. 356)	
0.3	2. 407 (2. 411)	2. 363 (2. 355)	2. 409 (2. 414)	2. 363 (2. 356)	
0.4	2. 407 (2. 411)	2.364 (2.355)	2. 409 (2. 414)	2.364 (2.355)	
0.5	2. 407 (2. 411)	2. 363 (2. 355)	2. 409 (2. 414)	2.364 (2.355)	
0.6	2. 406 (2. 412)	2. 364 (2. 355)	2. 409 (2. 414)	2.364 (2.355)	
0.7	2.406(2.411)	2. 365 (2. 354)	2. 408 (2. 413)	2. 364 (2. 354)	

Table S2 Calculated bond lengths $d_{Mo-S1(S2)}$, $d_{W-S1(S2)}$ and $d_{V-S1(S2)}$ in the XS_2/VS_2 heterostructures under different external E-field.

Fig. S1 The band structures of MoS_2 , WS_2 and VS_2 monolayers with and without strain calculated using the HSE06 methods, considering the SOC effects.

Fig. S2 The projected density of states (PDOS) of (a) MoS_2/VS_2 and (b) WS_2/VS_2 heterostructures.

Fig. S3 The spin-up and spin-down bands obtained by HSE06 methods for (a) MoS_2/VS_2 and (b) WS_2/VS_2 heterostructure under external electric field of -0.3 V/Å, 0 V/Å, and 0.3 V/Å.

Fig. S4 The projected band structures of (a) MoS_2/VS_2 and (b) WS_2/VS_2 heterostructures under selected external electric field with majority and minority bands marked with upward arrows and downward arrows, respectively.