

Nicking Enzymes Controlled Toehold Regulation for DNA Logic Circuit

Supplementary Information

Linqiang Pan,a,b Zhiyu Wang,a Yifan Li, Fei Xu,*a Qiang Zhang,*e Cheng Zhang*c

a Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of

Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. E-mail: fei_xu@hust.edu.cn

b School of Electric and Information Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, Henan, China.

c Institute of Software, School of Electronics Engineering and Computer Science, Peking University. Key laboratory of High

Confidence Software Technologies, Ministry of Education, Beijing 100871, China. E-mail: zhangcheng369@pku.edu.cn

d School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China.

e College of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China. E-mail:

zhangq@dlu.edu.cn

Contents

Note S1: Experimental section

Note S2: Reaction simulation

Note S3: NOT gate

Note S4: INHIBIT gate

Note S5: Nicking enzyme

Note S6: Concentration for TGM

Note S7: YES gate

Note S8: AND gate

Note S9: SWITCH logic circuit

Note S10: SWITCH logic statement

Note S11: Sequences

Note S12: Python code for simulating reactions and fitting rate constants

Reference

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2017

Note S1: Experimental section

Materials. DNA oligonucleotides were PAGE gel-purified and purchased from Sangon Biotech

Co., Ltd.(Shanghai, China). Nicking enzyme Nt.BbvCI, Nt.BsmAI, Nb.BtsI and CutSmart buffer were

purchased from New England Biolabs Inc.

DNA assembly. DNA structures B:C, E:F, I and G were generated by mixing corresponding single

strands with equal concentrations of 8 uM in 1×Cutsmart buffer and each of the final concentrations

of B:C, E:F, I and G was 4 uM. The sample was annealed in a polymerase chain reaction (PCR) thermal

cycler to control the temperature from 90°C to 22°C at a rate of -4°C every 5 minutes.

Catalysis of nicking enzymes. The catalysis of nicking enzymes was performed in 1×Cutsmart

buffer at 25°C. For YES, NOT AND and INHIBIT gate, the catalysis time was 1 hour, and for SWITCH

logic circuit, the catalysis time was 2.5 hours. After catalysis, it took 3.5 hours for strand displacement.

Native polyacrylamide gel electrophoresis. Samples were run on 12% native polyacrylamide gel

in 1×TAE buffer at 85V for 2 hours at 4°C. Gels were scanned with a Fluorchem FC2 gel scanner.

Quantitative real-time polymerase chain reaction. The fluorescent experiments were

implemented using real-time PCR (Agilent, G8830A) equipped with a 96-well fluorescence plate

reader. In a typical 25-uL reaction volume, the 1× reaction concentration was 0.4 uM. The reactions

were performed in NEB Cutsmart buffer. Fluorescence intensity was measured every 3 minutes for

300 minutes (YES, NOT, AND and INHIBIT) or 390 minutes (SWITCH). Each experiment was

repeated three times to ensure reproducibility. In each reaction, the fluorescence intensity was

calculated by subtracting the initial intensity baseline at each time point. The error bars were also

drawn on the fluorescence curves in each figure.

Note S2: Reaction simulation

A three-step cleaving-displacement reaction with a nicking enzyme can be modeled as:

BC + n1

 𝐾𝑛
→ B1B2C + n1



B1B2C

 𝐾1
→ B1 + B2C



B2C + A

 𝐾2
→ AC + B2



Therefore, the rate equation of B1B2C can be derived from reactions  and  as:

 d[B1B2C]/dt = Kn[BC][n1] - K1[B1B2C] (1)

The rate equation of B2C can be derived from reactions  and  as:

 d[B2C]/dt = K1[B1B2C] - K2[B2C][A] (2)

The rate equation of AC can be derived from reaction  as:

 d[AC]/dt = K2[B2C][A] (3)

When the initial condition is [BC]0, [A]0, [n1], the mass balance equations are:

 [BC]0 = [B1B2C] + [B1] (4)

 [B1] = [B2C] + [AC] (5)

 [A]0 = [A] + [AC] (6)

 [AC] = [B2] (7)

 The curve of [AC] can be obtained either by integration
2
 or solving difference equations. For

example, the differential equations above could be described by the following difference equations:

 B1B2C(k+1) = B1B2C(k) + Kn∙BC(k)∙[n1] - K1∙B1B2C(k) (8)

 B2C(k+1) = B2C(k) + K1∙B1B2C(k) - K2∙B2C(k)∙A(k) (9)

 AC(k+1) = AC(k) + K2∙B2C(k)∙A(k) (10)

The model above has good agreement with the data (Figure S1a) and Kn, K1 and K2 were fit to

2.67×10-9 L∙unit-1∙s-1①, 8.43×10-3 M-1∙s-1 and 1.03×104 M-1∙s-1, respectively. According to the parameter

values above, the reaction simulation for all the products were performed (Figure S1b). The olive

curve (AC) corresponds to the red curve in (a). The concentration curves may appear in three types:

rising, decreasing and rising followed by decreasing.

The concentrations of B1 and AC showed rising curves, because they were generated products. In

addition, the increase of AC appeared a little delay after that of B1, for the reason that the reaction 

occurred prior to reaction . The concentrations of BC and A showed decreasing curves for they only

served as consumed reactants.

Specially, in the simulation, the concentration of B1B2C increased at the beginning, but after

reached its summit, the concentration began to decrease. This is because the reaction rate is a result

depending on the production and consumption according to equation (1). In the equation (1), the

①As the amount of nicking enzyme is not measured with concentration in most cases, we introduced “unit concentration” to describe

the concentration of enzyme. For example, the unit concentration of the nicking enzyme in this reaction was 2×105 units/L (According

to NEB, one unit is defined as the amount of enzyme required to convert 1 µg of supercoiled plasmid DNA to open circular form in 1

hour at 37°C in a total reaction volume of 50 µl.). Therefore, the unit of Kn is L∙unit-1∙s-1.

production rate depends on the concentration of BC, which decreased all the time. On the other hand,

the consumption rate depends on the concentration of B1B2C, which kept increasing at the initial stage.

As a result, in the whole reaction process, the concentration of B1B2C increased initially and then

decreased, because consumption rate eventually surpassed the production rate. The concentration

curve of B2C was similar to that of B1B2C.

In the simulation, the concentration of B2C reached a summit of 2.26×10-8M at 8th minute, while

the reaction rate of AC reached a summit of 1.05×10-8M/s at 7th minute. The reason for the time

difference between the two summits is that, in equation (3), the concentrations of B2C and A varied

asynchronously.

Figure S1. Reaction rate constants for the cleaving-displacement reaction and simulative results for the products

in the reaction. (a) Simulation for the reaction in which the nicking enzyme and the displacement strand were

added simultaneously (line 6 in Figure 2a). [BC]=400nM, [A]=800nM, [n1]=2×105 units/L. (b) Simulative results

for the products according to the values of Kn, K1 and K2 in (a). The concentration of B1B2C and B2C stayed a

low level during the whole reaction because the consumption rate approached the production rate. The

concentration of AC showed a delay form that of B1 due to the reaction order.

To investigate the details of the reaction, the simulation for the reaction rate of each product was

performed based on the parameters obtained above (Figure S2). The simulative results showed that

the maximum reaction rate of BC was -1.28×10-8M/s (at the beginning), of B1B2C was 1.28×10-8/s

(at the beginning), of B1 was 1.12×10-8M/s (at 5th minute), of B2C was 0.65×10-8M/s (at 1st minute),

of A was -1.05×10-8M/s (at 7th minute), of AC was 1.05×10-8M/s (at 7th minute). Specially, in the

reactions, both the products B1B2C and B2C possessed producing and consuming procedures. For

B1B2C, it came from BC, and was converted into B1 and B2C. Due to the low concentration of B1B2C

at the beginning, the consumption rate was extremely low, and thus the concentration of B1B2C

increased. As the concentration of B1B2C increased, the consumption rate increased and finally the

consumption rate surpassed the production rate. Therefore, the concentration of B1B2C presented

consuming trend. In the simulation, the consuming rate of B1B2C reached a maximum of 6.21×10-

10M/s at 9th minute. For B2C, the production rate depended on the concentration of B1B2C. Initially

the concentration of B1B2C was zero so that the initial production rate of B2C was zero. According to

equation (2), the consumption rate of B2C depended on the concentrations of both A and B2C. With

the increasing concentration of B2C, the consumption rate of B2C increased dramatically, and

eventually the concentration of B2C presented a consuming trend. In the simulation, the consuming

rate of B2C reached a maximum of 3.73×10-10M/s at 16th minute.

Figure S2. Simulative results for reaction rates of each product. As BC and A were always consumed, their reaction

rates show negative values. As B1 and AC were always produced, their reaction rates show positive values. Since

B1B2C and B2C would be consumed after being produced, their reaction rate shows positive values then negative

values.

Note S3: NOT gate

A NOT gate performs the operation that reverts the input value, for example, a True input leads to a

False output. So we can define the input as True if the nicking enzyme is present, as False if the nicking

enzyme is absent. The output is defined as True if strong fluorescent signal is observed, as False if no

strong fluorescent signal can be observed.

Figure S3. NOT gate. In the absence of the nicking enzyme, strand displacement between D and E:F

occurs, leading to strong fluorescent signal. In the presence of the nicking enzyme, the toehold will be

removed from E:F, thus no further reaction.

Based on Toehold Removal Mechanism (TRM), NOT logic can be readily constructed (Figure

S3). In the absence of the nicking enzyme (input as False), quencher strand F in complex E:F would

be freed through the strand displacement reaction, leading to the increase of the fluorescent signal

(output as True). In the presence of the nicking enzyme (input as True), the toehold would be cut off

via the cleavage by the nicking enzyme. Thus no further reaction occurs and no strong fluorescent

signal can be observed (output as False).

Figure S4. The grey intensity analysis of PAGE of NOT gate under ultraviolet. The right two height maps

correspond to two transections  and  on the left image. Bright area corresponds to higher grey value. Compared

with lane 5, the addition of nicking enzyme n1 led to peak of grey value disappearing (lane 3).

Note S4: INHIBIT gate

Table S1. Truth table for INHIBIT gate.

Inhibit Input Output

0 0 0

 0 1 1

1 0 0

1 1 0

INHIBIT gate contains a data input (Input in Table S1) and a control input (Inhibit in Table S1). The

control input decides whether the gate is active. For example, if the control input is true, the gate is

inactive (i.e. the output is always false). If the control input is false, the output is depended on the data

input. INHIBIT gate can be constructed by cascading a NOT gate to one input of AND gate.

Figure S5. INHIBIT gate. (a) Reaction scheme of INHIBIT gate. Nicking enzyme n1 could inhibit strand

displacement by removing the toehold of E:F, and nicking enzyme n3 could free a displacement strand I1 from

hairpin I to trigger strand displacement if the toehold of E:F still exists. Only when n1 is absent and n3 is present

could strand displacement take place, leading to strong fluorescence signal observed. (b) Kinetic characterization

of INHIBIT gate. Only when n1 was absent and n3 was present could strand displacement take place yielding

durable strong fluorescence signal (red dots). Other combination of inputs (black pentagons, blue diamonds and

teal triangles) did not show significant fluorescence increase. Error bars represent one standard deviation from

duplicate experiments.

The construction of INHIBIT gate is consisted by NOT gate and a DNA hairpin structure (Figure

S5a). The addition of nicking enzyme n1 can remove the toehold that is necessary in the further strand

displacement. Therefore, the strand displacement is inhibited after nicking digestion. Nevertheless, if

n1 is not added, the addition of nicking enzyme n3 can cleave the hairpin and release a single strand

that could trigger the strand displacement, leading to significant fluorescence signal observed. In the

kinetic experiment (Figure S5b), only when n1 was absent and n3 was present, could strand

displacement take place with the yield of durable fluorescence signal (red dots). Other combinations

of inputs (black pentagons, blue diamonds and teal triangles) did not show significant fluorescence

increase. As the reaction rate of strand displacement reaction is always faster than that of nicking

enzyme cleavage reaction, when n1 and n3 are both added, strand displacement will still take place for

n1 does not have enough time to eliminate all the toeholds (olive squares).

Figure S6. Nondenaturing gel electrophoresis of INHIBIT gate. True output (DNA structure 3) only existed in the

presence of n3 and absence of n1 (lane 4). The reactions with other combinations of inputs (lane 3, 5 and 6) showed

false outputs.

 According to the gel electrophoresis in Figure S6, the toehold removal mechanism has a little

side effect. The toehold is only removed from the DNA duplex, not completely removed from the

solution. So after the toehold was removed, it would cling to a strand with complement sequence to it

(DNA structure 7), and this in rare cases may cause the formation of unwanted structures.

Note S5: Nicking enzyme

The nicking enzyme is a kind of restriction enzyme that only operates on one strand of a DNA duplex

and introduces a nick. This property makes the nicking enzyme possible to regulate the DNA toehold

in strand displacement.

Figure S7. The characteristic of usual restriction enzyme and nicking enzyme.
1
 Usual restriction enzymes will

operate on both strands of the duplex and cleave the duplex into two parts (left). Each part is with a short single-

stranded overhang (~3nt), and the sequence of the overhang relates to the recognition site of the enzyme. Unlike

the usual restriction enzymes, nicking enzymes will operate on one strand of the duplex only. A nick will be

introduced on the duplex with the opposite strand remaining unchanged.

Note S6: Concentration for TGM

Figure S8. Fluorescence data for varying concentrations of displacement strand A. Displacement strand [A]:

400nM = 1x(10pmol at 25μL); substrate [B:C] = 400nM; nicking enzyme n1 = 10 units; 25°C. In order to get a

high fluorescence curve with a relatively moderate slope (it would help to get more reaction details), 2  [A] was

selected for further experiment. Error bars represent one standard deviation from duplicate experiments.

Figure S9. Fluorescence data for varying concentrations of nicking enzyme Nt.BbvCI. The amount of Nt.BbvCI:

0.5μL = 1 (5 units at 25μL); substrate [B:C] = 400nM; displacement strand [A] = 800nM; 25°C. 1 Nt.BbvCI

shows an ideal performance. Error bars represent one standard deviation from duplicate experiments.

Note S7: YES gate

Figure S10. The grey intensity analysis of PAGE of YES gate under ultraviolet. The right three height maps

correspond to three transections , and  on the left image. Bright area corresponds to higher grey value. In

the presence of displacement strand A, the addition of nicking enzyme n1 led to peak of grey value (lane 5).

Note S8: AND gate

Figure S11. Nondenaturing gel electrophoresis of AND gate. True output (DNA structure 6) only existed in the

presence of both inputs, nicking enzymes n1 and n2 (lane 6). The reactions with either input (nicking enzyme n1

or n2, lane 4 and lane 5) or no input (lane 3) showed false outputs.

Note S9: SWITCH logic circuit

Figure S12. Nondenaturing gel electrophoresis of SWITCH logic circuit. The combination of the inputs was

presented as three digits, D1D2D3. D1D2D3 stand for nicking enzymes n1, n2 and n3; 0 for being not added and 1

for being added. The 8 combinations of inputs were in lane 1-7, 1-8, 2-7, 2-8, 3-6, 3-7, 4-7 and 4-8. Red number

means that this structure could emit fluorescence signal as true output. Red INPUT indicates that this combination

of inputs will lead to true output. We can conclude that when n1 was not added, the output value was the same as

whether n3 was added, and when n1 was added, the output value was the same as whether n2 was added.

Note S10: SWITCH logic statement

In computer programming languages, a switch statement is a type of selection control mechanism used

to allow the value of a variable or expression to change the control flow of program execution via a

multiway branch. Switch statements exist in most high-level imperative programming languages such

as Pascal, Ada, C/C++, C# and Java, and in many other types of language, using such keywords as

switch, case, select or inspect. Switch statements come in two main variants: a structured switch, as in

Pascal, which takes exactly one branch, and an unstructured switch, as in C, which functions as a type

of goto. The main reasons for using a switch include improving clarity, by reducing otherwise

repetitive coding, and (if the heuristics permit) also offering the potential for faster execution through

easier compiler optimization in many cases.

 A switch statement is often represented in the following form (Figure S13): an expression and a

number of code blocks. According to the value of the expression, the program would proceed to a

certain branch.

Figure S13. The control flow of switch statement. The value of the expression will be matched with the according

case, then the codes for the case will be performed and proceed to the very end.

 The SWITCH logic circuit constructed here could perform switch statement: three nicking

enzymes are three inputs, and the expression is nicking enzyme n3; case 1 and case 2 correspond to

true and false respectively; code block 1 is that the output is equal to n1; code block 2 is that the output

is equal to n2. It could be represented as following (in the form of C language):

switch (n3) {

 case 1: output = n1; break;

 case 0: output = n2; break;

}

 Thus, this construction for employing DNA circuit to operate computer program fragment is a

beneficial attempt to realize molecular level programming.

Note S11: Sequences

In order to differentiate the different structures in gel analysis, multi-thymine (T) was employed in

strand B and strand D. All the sequences were designed using Nupack to avoid unwanted structures.

Table S2. DNA sequences for YES, NOT, AND, INHIBIT and SWITCH (5’ to 3’).

A CAGCCTCAGCAGTTGGATACATCTCAAGC

B TTTTTTTCAGCCTCAGCAGTTGGATACATCTCAAGCTTTTTTTTTTTTTTT-BHQ

C HEX-GCTTGAGATGTATCCAACTGCTGAGGCTG

D TTTTTTTTTTTTATCCGTTCCTTGCAGTTGCTGAGGTGGCCAT

E TTATGGCCACCTCAGCAACTGCAAGGAACGGATCA-FAM

F BHQ-TGATCCGTTCCTTGCAGTTGCTGAGGT

G GGCTGCGAGACTCGGTTTTCCGAGTCTCGCAGCCTCAGCAGTTGGATACATCTCAAGC

I ATCCGTTCCTTGCAGTTGCTGAGGTGGCCATCACTGCTTGTTTTCAAGCAGTGATGGC

Table S3. Strands combination for YES, NOT, AND, INHIBIT and SWITCH circuit.

Circuit Strands

YES A, B, C

NOT D, E, F

AND B, C, G

INHIBIT E, F, I

SWITCH B, C, E, F, G, I

Table S4. DNA sequences for effect of length of toeholds on the performance of YES gatea).

T-2-A CCTCAGCAGTTGGATACATCTCAAGC

T-2-B TTTTTTTCCTCAGCAGTTGGATACATCTCAAGCTTTTTTTTTTTTTTT

T-2-C GCTTGAGATGTATCCAACTGCTGAGG

T-3-A GCCTCAGCAGTTGGATACATCTCAAGC

T-3-B TTTTTTTGCCTCAGCAGTTGGATACATCTCAAGCTTTTTTTTTTTTTTT

T-3-C GCTTGAGATGTATCCAACTGCTGAGGC

T-6-A GCAGCCTCAGCAGTTGGATACATCTCAAGC

T-6-B TTTTTTTGCAGCCTCAGCAGTTGGATACATCTCAAGCTTTTTTTTTTTTTTT

T-6-C GCTTGAGATGTATCCAACTGCTGAGGCTGC

T-8-A ATGCAGCCTCAGCAGTTGGATACATCTCAAGC

T-8-B TTTTTTTATGCAGCCTCAGCAGTTGGATACATCTCAAGCTTTTTTTTTTTTTTT

T-8-C GCTTGAGATGTATCCAACTGCTGAGGCTGCAT

a)T-5-A, T-5-B and T-5-C are the same sequence as A, B and C in Supplementary Table s2.

Figure S14. Nupack simulations for each strand in Supplementary Table s2. The unstable hairpin structures in a

to f will not hinder the formation of DNA duplex such as B:C.

Figure S15. Nupack simulations for double-stranded structures used in YES, NOT, AND, INHIBIT and SWITCH

circuits. The duplexes are stable without the cleavage of nicking enzymes.

Note S12: Python code for simulating reactions and fitting rate constants

The simulation was performed using python 3.6, and the three parameters kn, k1, k2 corresponded to

r1.p0[0], r1.p0[1] and r1.p0[2], respectively.

import numpy as np

from scipy.optimize import leastsq

class Reaction_simu:

 def __init__(self, data):

 self.data = data

 self.p0 = [1e-7, 1.5, 1e+6]

 self.n1 = 2e+5

 self.ini = np.array([4e-7, 0, 0, 0, 0, 8e-7])

 def differ(self, kn, k1, k2, time=91, wreturn='ac'):

 bc = np.linspace(0,0,time)

 b1 = np.linspace(0,0,time)

 b2c = np.linspace(0,0,time)

 b1b2c = np.linspace(0,0,time)

 ac = np.linspace(0,0,time)

 a = np.linspace(0,0,time)

 sbc = np.linspace(0,0,time)

 sb1 = np.linspace(0,0,time)

 sb2c = np.linspace(0,0,time)

 sb1b2c = np.linspace(0,0,time)

 sac = np.linspace(0,0,time)

 sa = np.linspace(0,0,time)

 bc[0] = self.ini[0]

 b1[0] = self.ini[1]

 b2c[0] = self.ini[2]

 b1b2c[0] = self.ini[3]

 ac[0] = self.ini[4]

 a[0] = self.ini[5]

 for n in range(time-1):

 sbc[n] = -kn*bc[n]*self.n1

 sb1[n] = k1*b1b2c[n]

 sb2c[n] = k1*b1b2c[n] - k2*b2c[n]*a[n]

 sb1b2c[n] = kn*bc[n]*self.n1 - k1*b1b2c[n]

 sac[n] = k2*b2c[n]*a[n]

 sa[n] = -k2*b2c[n]*a[n]

 bc[n+1] = bc[n] + sbc[n]

 b1[n+1] = b1[n] + sb1[n]

 b2c[n+1] = b2c[n] + sb2c[n]

 b1b2c[n+1] = b1b2c[n] + sb1b2c[n]

 ac[n+1] = ac[n] + sac[n]

 a[n+1] = a[n] + sa[n]

 sbc[n] = -kn*bc[n]*self.n1

 sb1[n] = k1*b1b2c[n]

 sb2c[n] = k1*b1b2c[n] - k2*b2c[n]*a[n]

 sb1b2c[n] = kn*bc[n]*self.n1 - k1*b1b2c[n]

 sac[n] = k2*b2c[n]*a[n]

 sa[n] = -k2*b2c[n]*a[n]

 if wreturn == 'ac':

 return ac

 elif wreturn == 'bc':

 return bc

 elif wreturn == 'b1':

 return b1

 elif wreturn == 'b2c':

 return b2c

 elif wreturn == 'b1b2c':

 return b1b2c

 elif wreturn == 'a':

 return a

 elif wreturn == 'sac':

 return sac

 elif wreturn == 'sbc':

 return sbc

 elif wreturn == 'sb1':

 return sb1

 elif wreturn == 'sb2c':

 return sb2c

 elif wreturn == 'sb1b2c':

 return sb1b2c

 elif wreturn == 'sa':

 return sa

 def funcerror(self, p, y):

 return y - self.differ(p[0], p[1], p[2])

 def get_p(self):

 self.p0 = leastsq(self.funcerror, self.p0, args=(self.data))[0]

 return self.p0

r1 = Reaction_simu(np.load('data.npy'))

print(r1.get_p())

Reference

 (1) Heiter, D. F.; Lunnen, K. D.; Wilson, G. G. JOURNAL OF MOLECULAR BIOLOGY 2005, 348, 631-640.

 (2) Kotani, S.; Hughes, W. L. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY 2017, 139, 6363-6368.

