

Supplemental Figures

Figure S1. Cyclic voltammograms for (A) TFE-Au, (B) TFE-Pt, (C) TFE-Au|Pt, (D) TFE-Pt|Pt, (E)TFE-Au|PAn-Cl, (F) TFE-Pt|PAn-Cl, (G)TFE-Au|Pt|PAn-Cl, and (H) TFE-Pt|Pt|PAn-Cl measured in 0.01 M PBS from -1 V to 1 V at scan rates of 10 mV/s to 100 mV/s in 10 mV/s intervals.

Varying the scan rate of the CV gives further insight into the kinetics of rate controlling processes at the metal polymer interface. **Figure S1** shows cyclic voltammograms for TFE-Au (A), TFE-Pt (B), TFE-Au |Pt (C), TFE-Pt |Pt (D), TFE-Au |PAn-Cl (E), TFE-Pt |PAn-Cl (F), TFE-Au |Pt |PAn-Cl (G), and TFE-Pt |Pt |PAn-Cl (F) measured in 0.01 M PBS from -1 V to 1 V at scan rates of 0.1 V/s, 0.05 V/s, 0.025 V/s, and 0.01 V/s. It is clear that scan rate has little effect of the response of gold in PBS, however the peak shown in TFE-Pt (B) associated with hydrogen evolution shows a response with increasing scan rate. TFE-Au |Pt (C), shows a response similar to TFE-Pt (B) with respect to scan rate. TFE-Au |Pt (C) and TFE-Pt |Pt (D) show quasi-reversible reactions for different values of reduction and oxidation rate constants. TFE-Au |Pt |PAn-Cl (G) exhibits reversible electron processes, as shown in the increasing scan rates. It appears that deposition of PAn-Cl onto an interceding platinum layer via platinization allows for better film adhesion and improved electron transfer kinetics.

	Au			Au Pt			Au PAn-Cl			Au Pt PAn-Cl		
	DI	PBS	HEPES	DI	PBS	HEPES	DI	PBS	HEPES	DI	PBS	HEPES
R _s (Ω)	2.52E+03	4.85E+01	9.30E+02	2.00E+03	4.41E+01	2.15E+03	1.30E+03	4.23E+01	4.68E+02	1.23E+03	5.10E+01	2.41E+03
Q _{dl} (S-sec ⁿ)	3.49E-06	1.37E-05	7.06E-06	4.41E-05	2.17E-04	7.31E-04	1.82E-02	1.67E-03	2.18E-02	1.33E-03	1.30E-04	1.02E-04
n (0 <n<1)< td=""><td>5.45E-01</td><td>9.35E-01</td><td>5.17E-01</td><td>5.08E-01</td><td>8.01E-01</td><td>4.38E-01</td><td>4.20E-01</td><td>9.19E-01</td><td>5.28E-01</td><td>2.72E-01</td><td>8.07E-01</td><td>4.52E-01</td></n<1)<>	5.45E-01	9.35E-01	5.17E-01	5.08E-01	8.01E-01	4.38E-01	4.20E-01	9.19E-01	5.28E-01	2.72E-01	8.07E-01	4.52E-01
R _{ct} (Ω)	2.72E+04	2.81E+06	2.85E+04	2.09E+03	1.79E+04	2.15E+03	1.42E+03	6.15E+01	2.88E+01	9.95E+03	2.30E+04	2.61E+03
χ2	8.03E-02	5.66E-02	1.77E-01	3.01E-01	1.70E-02	4.39E-02	2.35E-03	1.92E-01	3.33E-02	1.62E-02	3.00E-03	1.40E-02
	Pt			Pt Pt			Pt PAn-Cl			Pt Pt PAn-Cl		
	DI	PBS	HEPES	DI	PBS	HEPES	DI	PBS	HEPES	DI	PBS	HEPES
R _s (Ω)	2.52E+03	6.94E+01	9.40E+02	2.21E+03	4.09E+01	1.16E+03	9.48E+02	4.90E+01	4.92E+02	1.28E+03	4.42E+01	1.23E+03
Q _{dl} (S-sec ⁿ)	5.29E-06	1.40E-05	1.24E-05	4.82E-05	2.55E-04	8.71E-05	6.24E-02	1.49E-03	2.24E-02	1.23E-03	2.31E-04	1.68E-04
n (0 <n<1)< td=""><td>4.41E-01</td><td>9.08E-01</td><td>6.04E-01</td><td>5.64E-01</td><td>7.77E-01</td><td>4.52E-01</td><td>4.44E-01</td><td>6.96E-01</td><td>5.55E-01</td><td>4.15E-01</td><td>7.80E-01</td><td>4.96E-01</td></n<1)<>	4.41E-01	9.08E-01	6.04E-01	5.64E-01	7.77E-01	4.52E-01	4.44E-01	6.96E-01	5.55E-01	4.15E-01	7.80E-01	4.96E-01
R _{ct} (Ω)	7.13E+04	1.76E+06	1.53E+04	7.29E+03	1.88E+04	2.40E+04	9.38E+01	4.96E+01	3.90E+01	1.34E+04	9.57E+04	6.15E+04
χ2	2.36E-01	2.55E-01	1.34E-01	3.90E-02	1.05E-02	1.62E-01	6.00E-04	2.33E-02	4.04E-02	1.51E-02	2.60E-03	1.20E-02