Supporting Information

Stabilization of Hybrid Perovskite CH₃NH₃PbI₃ Thin Films by Graphene Passivation

Wei-Shiuan Tseng,^{*a,b*} Meng-Huan Jao,^{*a,c*} Chen-Chih Hsu,^{*a*} Jing-Shun Huang,^{*d*} Chih-I Wu,^{*b*} and N.-C. Yeh^{*,*a*}

^aDepartment of Physics, California Institute of Technology, Pasadena, CA 91125, USA

^bGraduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan ^cDepartment of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan ^dTomas J. Watson Laboratories of Applied Physics, CA 91125, USA

*E-mail: Nai-Chang Yeh (ncyeh@caltech.edu)

Supporting figures:

Figure S1. Raman spectra of the same graphene samples as shown in Figure 1 before the removal of their Cu substrate: (a) As-grown graphene on Cu before the water-free transfer; and (b) as-grown graphene on Cu before the water-assisted polymer-free transferring.

Figure S2. Optical micrographs of graphene sheets on (a) ITO and (b) glass surfaces

transferred by the water-free transferring method.

Figure S3. The work functions of as-transferred graphene measured via UPS. (a) UPS data of graphene transferred with the water-free method before and after rinse. (b) UPS data of graphene transferred with the water-assisted method before and after rinse.

Figure S4. Evolution of XPS N-1s peaks as a function of ambient storage time. (a) Perovskite surface without any protection. (b) Perovskite with graphene covered.

Figure S5. Evolution of perovskite degradation monitored via high-resolution UPS without graphene protection. (a) The evolution of secondary electron cutoff as a function of aging time. (b) The evolution of high-resolution valence band UPS spectra.

Figure S6. Statistics of the sheet resistance of graphene transferred onto a-SiO₂ by both (a) water-free and (b) water-assisted methods, showing values very close to the typical sheet resistance of graphene that was transferred by other polymer-free methods but much lower than those of the PMMA-transferred graphene samples indicated in the shaded band. Here the sheet resistance measurements were carried out on 20 different areas of each sample.