Electronic Supplementary Information

Bioconjugated fluorescent organic nanoparticles targeting EGFRoverexpressing cancer cells

Adrien Faucon,^a Houda Benhelli-Mokrani,^b Fabrice Fleury,^b Stéphanie Dutertre,^c Marc

Tramier,^{c,d} Joanna Boucard,^a Lénaïc Lartigue,^a Steven Nedellec,^e Philippe Hulin,^e and Eléna

Ishow^a*

^aCEISAM–UMR CNRS 6230, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes,

France. ^bUFIP–UMR CNRS 6286, Université de Nantes, 2 rue de la Houssinière, 44322

Nantes, France. °Microscopy Rennes Imaging Center (MRIC), Biosit – UMS CNRS 3480/US

INSERM 018, University of Rennes 1, 35043 Rennes, France. dInstitut de Génétique et

Développement de Rennes, UMR CNRS 6290, Université de Rennes 1, 2 avenue du Pr Léon

Bernard, 35043 Rennes, France. eINSERM UMS 016-UMS CNRS 3556, 8 quai Moncousu,

44007 Nantes, France. E-mail: elena.ishow@univ-nantes.fr

Description	Pages
Fig. S1- TEM diameter distribution and images	S2
Fig. S2. First magnetization curves	S3
Fig. S3 and Tab. S1- Photophysical characteristics of FON _m -cys and FON _m -trityl	S4
Fig. S4- Autocorrelograms of the blue channel	S5
Fig. S5-S6- Fluorescence intensity time traces and histograms of peak area for the	S6-S7
control experiments	
Fig. S7- Cell viability	S 8

Fig. S1 TEM diameter distributions for (a) FON_m and (c) FON_m -EGF nanoassemblies from TEM imaging after sample deposition on holey carbon grid. Histograms were traced using a 5 nm segmentation and fitted with Gaussian distribution (continuous black line)

Magnetic measurements

Magnetic measurements were collected with a Quantum Design MPMS-XL5 SQUID magnetometer. The nanoassembly solutions were diluted and deposited on a small piece of cotton to avoid magnetic dipole–dipole interactions (iron concentration in the $4 - 8 \times 10^{-5}$ mol.L⁻¹ range). After water evaporation, the sample was placed in a polycarbonate capsule and the magnetization curves were measured at 300 K with a magnetic field varying from 0 to 3 T. All data were carefully corrected from diamagnetic contributions due to the sample holder and container

Fig. S2 First magnetization curves at 300 K of FON and FON_m nanossemblies as a function of the applied magnetic field.

sample	$\lambda^{\max}(abs)$ (nm)	$\lambda^{\max}(em)$ (nm)	₽ _f (×10 ⁻²)	$<\tau_S>^b$ (ns)
FON _m	426	611	1.4	1.22
FON _{m-} cys	426	608	2.2	1.51
FON _m -trityl	426	597	2.8	2.02

Table S1 Structural and photophysical characteristics of FON_m, FON_m-cys, and FON_m-trityl.

^a Measured in HBSS solution. ^b Average amplitude excited state lifetime calculated from the multiexponential decay using a global fit analysis after $I_f(t) = \sum_i a_i \exp(-t/\tau_i)$ with $\langle \tau_s \rangle = \frac{\sum_i a_i \tau_i}{\sum_i a_i}$ amplitude-weighted excited state average lifetime.

Fig. S3 (a) Schematic structures of the nanoassemblies after reacting cystein (FON_m-cys) and triphenylmethanethiol (FON_m-trityl) with FON_m. (b) Absorption spectra, (c) and (d) emission spectra (λ_{exc} = 450 nm), and fluorescence decay (λ_{exc} = 450 nm, λ_{exc} = 610 nm) of FON_m-cys, FON_m-trityl, FON_m and FON.

Fig. S4 Autocorrelograms of the fluorescence intensity fluctuations recorded in the blue channel (415-455 nm) over 6 min upon excitation at 405 nm for the immunoconstruct FON_m-EGF-ABI-ABII*, FON_m-EGF/ABII*, FON_m/ABI-ABII*, FON_m/ABI-ABII*, Inset: zoom-in.

Fig. S5 Fluorescence intensity time traces of control solutions recorded in the red (581-654 nm) and blue (415-455 nm) channels over 6 min upon excitation at 405 nm: (a) ABI-ABII*, (b) FON.

Fig. S6 Fluorescence intensity time traces and corresponding histograms of the peak areas recorded in the red (581-654 nm) and blue (415-455 nm) channels over 6 min. upon excitation at 405 nm for the control experiments: (a) FON_m -EGF/ABI-ABII*, (b) FON_m /ABI-ABII* and (c) FON_m /ABII*.

Fig. S7 Cell viability using trypan blue exclusion test for MDA-MB-468 cancer cells incubated with FON_m -EGF, EGF (10 ng.mL⁻¹), and FON in culture medium supplemented with FBS after 1 h, 4 h, and 24 h incubation times.