Supporting Information

Size Dependence of Gold Clusters with Precise Numbers of Atom in Aerobic Oxidation of D-Glucose

Junying Zhang,¹ Zhimin Li,¹ Jiahui Huang,^{*} Chao Liu, Feng Hong, Kai Zheng, and Gao Li,^{*} Gold Catalysis Research Centre, State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China.

¹J.Z., and Z.L. contributed equally to this work.

*Corresponding author. E-mail address: jiahuihuang@dicp.ac.cn (J.H.); gaoli@dicp.ac.cn (G.L.)

Figure S1. FT-IR analysis of Au₂₅(PET)₁₈/AC, Au₃₈(PET)₂₄/AC, Au₁₄₄(PET)₆₀/AC, and the free active carbon samples.

Figure S2. TEM analysis of the Au_{25}/AC -150 catalyst.

Figure S3. TEM analysis of the Au₂₅/AC-300.

Figure S4. EDX analysis of the Au_{25}/AC -300. No sulfur elements are found in the analysis, implying that the thiolate ligands are all removed after 300 °C treatment in the presence of air.

Figure S5. HPLC analysis of the reaction mixture at different reaction time in the D-glucose oxidation to gluconic acid. Test conditions: Shodex SH1011 column, 10 mM acetic acid as the mobile phase of 0.5 mL/min, and using the refractive index (RI) as the detector. The retention time for gluconic acid, D-glucose, and fructose is ca. 13.99, 14.86, and 15.88 min, respectively.

Figure S6. TEM image of Au/AC.