Supplementary material for

Hierarchical cobalt-nitride and -oxide co-doped porous carbon nanostructures for highly efficient and durable bifunctional oxygen reaction electrocatalysts

Kyung Jin Lee ${ }^{a, b}$, Dong Yun Shin ${ }^{c}$, Ayeong Byeon ${ }^{a}$, Ahyoun Lim ${ }^{a, d}$, Young Suk Jo ${ }^{a}$, Alina Begley ${ }^{e}$, Dong-Hee Lim ${ }^{c}$, Yung-Eun Sung ${ }^{d}$, Hyun S. Parka ${ }^{a}$, Keun Hwa Chaef, Suk Woo Nam ${ }^{a, b}$, Kwan-Young Lee ${ }^{b}$, and Jin Young Kima ${ }^{a, b *}$
${ }^{a}$ Fuel Cell Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea, ${ }^{b}$ Green School, Korea University, 145, Anamro, Seongbuk-gu, Seoul 02841, Republic of Korea, ${ }^{\text {c Department of Environmental Engineering, }}$ Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea, ${ }^{d}$ School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea, ${ }^{e}$ Faculty of Chemistry and Mineralogy, University of Leipzig, Johannisallee 29, 04109 Leipzig, Germany, ${ }^{f}$ Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
*Corresponding author: jinykim@kist.re.kr

This document includes Supplementary figures (Figure S1-S15) and tables (Table S1-S3).

Figure S1. SEM image of hollow N-doped carbon microspheres.

Figure S2. XRD patterns of hollow N-C and Co-N/Co-O@N-C (100 $\left.{ }^{\circ} \mathrm{C}\right)$ and $\mathrm{Co}-\mathrm{N} / \mathrm{Co}-$
O@N-C (300 $\left.{ }^{\circ} \mathrm{C}\right)$. All peaks of Co-N/Co-O@N-C $\left(100^{\circ} \mathrm{C}\right)$ indicated cobalt nitrate hydrate $\left(\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O}\right)$. (JCPDS\#25-1219)

Figure S3. TEM images of Co-N/Co-O@N-C samples treated with $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ of 5 M concentration (a) and annealed at $400^{\circ} \mathrm{C}$ (b).

Figure S4. TGA profiles of hollow N-C and Co-N/Co-O@N-C samples.

Figure S5. XPS survey spectrum of Co-N/Co-O@N-C ($\left.400^{\circ} \mathrm{C}\right)$ and N1s narrow-scan spectrum in inner box.

Figure S6. Electrochemical measurements of the Co-N/Co-O@N-C samples heat-treated at $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$: (a) OER polarization curves and (b) ORR polarization curves.

Figure S7. RRDE test of the ORR on Co-N/Co-O@N-C according to the annealing temperature in O_{2}-satruraed 0.1 M KOH aqueous solution at 1600 rpm .

Figure S8. ORR Tafel plot.

Figure S9. OER Tafel plot.

Figure S10. XPS spectra of the samples for N-C and Co-N/Co-O@N-C samples annealed at 100,200 and $300^{\circ} \mathrm{C}$: (a) C 1 s , (b) N 1 s , (c) O 1 s and (d) Co 2 p .

Figure S11. Deconvolution of XPS C1s spectra of the samples for N-C and Co-N/Co-O@NC samples annealed at 100,200 and $300^{\circ} \mathrm{C}$.

Figure S12. Deconvolution of XPS O1s spectra of the samples for N-C and Co-N/Co-O@NC samples annealed at 100,200 and $300^{\circ} \mathrm{C}$.

Figure S13. Deconvolution of XPS Co2p spectra of the samples for Co-N/Co-O@N-C samples annealed at 100,200 and $300^{\circ} \mathrm{C}$.

Figure S14. Deconvolution of XPS N1s spectra of the samples for N-C and Co-N/Co-O@NC samples annealed at 100,200 and $300^{\circ} \mathrm{C}$.

Figure S15. N 1s narrow-scan spectrum of Co-N/Co-O@N-C phase prepared via heattreatment $\left(\sim 100^{\circ} \mathrm{C}\right)$ of cobalt nitrate with hollow N -doped carbon microsphere.

Sample	Specific surface area	Total pore volume	Average pore size
$\mathrm{N}-\mathrm{C}$	$846 \mathrm{~m}^{2} / \mathrm{g}$	$0.306 \mathrm{~cm}^{3} / \mathrm{g}$	9.44 nm
Co-N/Co-O@N-C	$493 \mathrm{~m}^{2} / \mathrm{g}$	$0.186 \mathrm{~cm}^{3} / \mathrm{g}$	8.23 nm

Table S1. Specific surface area, total pore volume, average pore size from N_{2} adsorptiondesorption isotherms of hollow $\mathrm{N}-\mathrm{C}$ and $\mathrm{Co}-\mathrm{N} / \mathrm{Co}-\mathrm{O} @ \mathrm{~N}-\mathrm{C}$ samples.

Sample	Specific surface area	Total pore volume	Average pore size
$\mathrm{Co}-\mathrm{N} / \mathrm{Co}-\mathrm{O} @ \mathrm{~N}-\mathrm{C}$ $\left(400^{\circ} \mathrm{C}\right)$	$25.34 \mathrm{~m}^{2} / \mathrm{g}$	$0.119 \mathrm{~cm}^{3} / \mathrm{g}$	18.9 nm

Table S2. Specific surface area, total pore volume, average pore size from N_{2} adsorptiondesorption isotherms of Co-N/Co-O@N-C (400 $\left.{ }^{\circ} \mathrm{C}\right)$ sample.

$\mathrm{Co}(\mathrm{K})-\mathrm{N}$	Coordination number
$\mathrm{Co}-\mathrm{N} / \mathrm{Co}-\mathrm{O} @ \mathrm{~N}-\mathrm{C}\left(100^{\circ} \mathrm{C}\right)$	0.452
$\mathrm{Co}-\mathrm{N} / \mathrm{Co}-\mathrm{O} @ \mathrm{~N}-\mathrm{C}\left(200^{\circ} \mathrm{C}\right)$	1.198
$\mathrm{Co}-\mathrm{N} / \mathrm{Co}-\mathrm{O} @ \mathrm{~N}-\mathrm{C}\left(300^{\circ} \mathrm{C}\right)$	1.155

Table S3. Coordination numbers of cobalt attached to nitrogen in Co-N/Co-O@N-C complexes.

