Hierarchical Core-Shell Structures of P-Ni(OH)₂ Rods@MnO₂ Nanosheets as High Performance Cathode Material for Asymmetric Supercapacitors

Kunzhen Li^a, Shikuo Li^b, Fangzhi Huang^b, Xinyao Yu,^c Yan Lu^a, Lei

Wang^a, Hong Chen^a and Hui Zhang^{a,} *

a. School of Physics and Materials Science, Anhui University, Hefei 230601, P. R. China

b. School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China

c. School of Materials Science & Engineering, Zhejiang University, Hangzhou 310027, P. R. China

Fig.S1. SEM images (a-d) of the MnO₂ nanosheets grown on Ni foam at low and high magnifications.

 $\label{eq:second} \mbox{Fig.S2. SEM images of the Ni(OH)_2 nanosheets (a-c) and Ni(OH) @MnO_2 nanosheets (d-f) grown on Ni foam at low and high magnifications.$

Binding energy (keV)

Fig.S3.TEM-EDX results for the hierarchical P-Ni(OH)2@MnO2 core/shell sample.

Fig.S4. XRD spectra of the hierarchical P-Ni(OH)2@MnO2 core/shell nanostructures grown on Ni foam.

Fig.S5. FT-IR spectrum of the hierarchical P-Ni(OH)2@MnO2 core/shell sample.

Fig. S6. (a) XPS survey spectra and (b) XPS spectra of P 2p from the pristine P-Ni(OH)₂ and the hierarchical P-Ni(OH)₂@MnO₂ core/shell samples.

 $Fig.S7.~(a)~CV~and~(b)~GCD~curves~of~the~Ni(OH)_2~/NF,~Ni(OH)_2@MnO_2/NF~and~P-Ni(OH)_2@MnO_2@MnO_2/NF~and~P-Ni(OH)_2@MnO_2@$

Fig.S8. (a) CV curves of the MnO₂/NF electrode at different scan rates; (b) GCD curves of the MnO₂/NF electrode at different current densities.

Fig.S9. (a) GCD curves of the P-Ni(OH)₂/NF electrode at different scan rates; (b) GCD curves of the P-Ni(OH)₂/NF electrode at different current densities.

Fig.S10.The corresponding specific capacitance of the P-Ni(OH)2@MnO2/NF electrode at different current density.

Figure S11.SEM images of typical hierarchical porous P-Ni(OH)₂@MnO₂ core/shell nanostructure grown on 3D Ni foam electrode (a) before and (b) after cycling for 10000 cycles. XPS survey spectra of the typical P-Ni(OH)₂@MnO₂ electrode sample after 10000 cycles (c), Ni 2p (d), Mn 2p (e) and O 1s (f).

Fig.S12. (a) CV curves of the AC at different scan rates; (b) GCD curves of the AC at different current densities.

Fig.S13. GCD curves of the P-Ni(OH)2@MnO2/NF and activated carbon electrodes at different voltage window.

Fig.S14. (a) CV curves of the P-Ni(OH)_2/NF//AC at different scan rates; (b) GCD curves of the P-Ni(OH)_2/NF//AC at different current densities.

Table	S 1
-------	------------

Asymmetric	Electrolyte	Potential	Specific	Maximum	Maximum	Retention(%)/cy	Refs.
supercapacitors		window	capacitan	energy	power	cling	
		(V)		density	density	number/current	
						density	
CoFe ₂ O ₄ @MnO ₂	3 M KOH	1.6	0.883	37	4800	91.5% % after	1
//AC			F cm ⁻²	Wh Kg ⁻¹	W Kg ⁻¹	2250 at 41 mA	
						cm ⁻²	
NiCo ₂ O ₄ @MnO ₂	1 M NaOH	1.5	0.52	35		71% % after	2
//AC			F cm ⁻²	Wh Kg ⁻¹		5000 at 18 mA	
						cm ⁻²	
Ni(OH) ₂ /MnO ₂	1 M KOH	1.7	315	10.9	424.1	78.2% after	3
@CNT//APDC			F g ⁻¹	mWh cm ⁻³	mW cm ⁻³	3000 at 0.5	
_						A g ⁻¹	
MnO2@CF//FeO	LiCl/PVA	1.6	5.5	2		82% after 5000	4
OH/PPy@CF			F cm ⁻³	mWh cm ⁻³		at 100 mV s ⁻¹	
PEDOT@MnO ₂ /	LiCl/PVA	2	60	0.0335		80% after 800	5
/C@Fe ₃ O ₄			mF cm ⁻²	mWh cm ⁻²		at 2 mA cm ⁻²	
MnO ₂ /PEDOT:	Na ₂ SO ₄ /	1.8	213.5	96.07	2700	96.8% after	6
PSS/CNT//VN@	PVA		mF cm ⁻²	μWh cm ⁻²	μW cm ⁻²	5000 at 2 mA	
C NWAs/CNT						cm ⁻²	
MnO ₂ /GMG//	LiCl/PVA	1.6	16.8	11.9		92.7% after	7
GCF			mF cm ⁻²	μWh cm ⁻²		8000 at 1 mA	
						cm ⁻²	
NPG@MnO ₂ //	LiCl/PVA	1.8	12	5.4	2531	90% after 2000	8
CNT/CP			mF cm ⁻²	μWh cm ⁻²	μW cm ⁻²	at 0.6 mA cm ⁻²	
MnO ₂ –PPy//	4 M LiCl	2	0.613	0.340	30	almost 100 %	9
V ₂ O ₅ –PANI			F cm ⁻²	mWh cm ⁻²	mW cm ⁻²	after 5000 at 30	
						mA cm ⁻²	
rGO@ MnO ₂ //	1M	1.5	113	35.1	3.8	84% after 1500	10
rGO paper	Na ₂ SO ₄		mF cm ⁻²	μWh cm ⁻²	mW cm ⁻²	at 15 mA cm ⁻²	
Ni(OH) ₂ NW	KOH/PVA	1.5	35.67	0.01	7.3	70% after	11
//Carbon fiber			mF cm ⁻²	mWh cm ⁻²	mW cm ⁻²	10000 at 0.5	
						mA cm ⁻²	
Ni(OH) ₂ -N	H ₂ SO ₄ /	1.45	255	79.5	3.9	92% after	12
G//NG	PVA		mF cm ⁻²	µWh cm ⁻²	mW cm ⁻²	10000 at 4 mA	
						cm ⁻²	
P-Ni(OH) ₂ @	LiOH/PV	1.6	0.911	0.324	16	80% after 5000	This
MnO ₂ /NF//AC	А		F cm ⁻²	mWh cm ⁻²	mW cm ⁻²	at 20 mA cm ⁻²	work

References

- 1. H. Gao, S. Cao and Y. Cao, *Electrochimica Acta*, 2017, **240**, 31-42.
- 2. K. Xu, W. Li, Q. Liu, B. Li, X. Liu, L. An, Z. Chen, R. Zou and J. Hu, Journal of Materials

Chemistry A, 2014, **2**, 4795.

- 3. J. Shen, X. Li, L. Wan, K. Liang, B. K. Tay, L. Kong and X. Yan, ACS Applied Materials & Interfaces, 2017, 9, 668-676.
- 4. X. Gong, S. Li and P. S. Lee, *Nanoscale*, 2017, **9**, 10794-10801.
- J. Sun, Y. Huang, C. Fu, Y. Huang, M. Zhu, X. Tao, C. Zhi and H. Hu, J. Mater. Chem. A, 2016, 4, 14877-14883.
- Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, C. Zhang, L. Tang, J. Luo, B. Song, Z. Zhang, W. Lu, Q. Li, Y. Zhang and Y. Yao, *Nano Lett*, 2017, 17, 2719-2726.
- B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy and C. Gao, *J. Mater. Chem. A*, 2014, 2, 9736-9743.
- 8. H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu and Y. Huang, Nano Research, 2014, 8, 1148-1158.
- W. Liu, N. Liu, Y. Shi, Y. Chen, C. Yang, J. Tao, S. Wang, Y. Wang, J. Su, L. Li and Y. Gao, J. Mater. Chem. A, 2015, 3, 13461-13467.
- 10. A. Sumboja, C. Y. Foo, X. Wang and P. S. Lee, *Adv Mater*, 2013, 25, 2809-2815.
- X. Dong, Z. Guo, Y. Song, M. Hou, J. Wang, Y. Wang and Y. Xia, Advanced Functional Materials, 2014, 24, 3405-3412.
- 12. H. Xie, S. C. Tang, D. D. Li, S. Vongehr and X. K. Meng, *ChemSusChem*, 2017, **10**, 2301-2308.