2D molybdenum and vanadium nitrides synthesized by ammoniation of 2D transition metal carbides (MXenes)

Patrick Urbankowski,¹ Babak Anasori,¹ Kanit Hantanasirisakul,¹ Long Yang,² Lihua Zhang,³ Bernard Haines,¹ Steven J. May,¹ Simon J. L. Billinge,^{2,4} Yury Gogotsi^{1†}

¹A.J. Drexel Nanomaterials Institute and Department of Materials Science & Engineering, Drexel University, Philadelphia, PA 19104, USA

²Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA

³Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA ⁴Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973, USA

[†]Corresponding author:

Y. Gogotsi (gogotsi@drexel.edu) Tel.: +1-215-895-6446 Fax: +1-215-895-1934

1 Synthesis of Mo₂Ga₂C and Mo₂CT_x

Synthesis of Mo_2Ga_2C : Mo_2CT_x was synthesized by etching a Mo_2Ga_2C powder precursor. M o_2Ga_2C powder was synthesized by a solid-liquid reaction in which -325 mesh Mo_2C powder and Ga (both Alfa Aesar, Ward Hill, MA, 99.5 wt% purity) were mixed in a 1 : 8 molar ratio.¹ This mixture was placed in a quartz tube that was evacuated of air using a vacuum pump and then sealed.¹ The tube was then placed in a tube furnace that was heated to 850 °C at a rate of 10 °C min⁻¹, and then held at that temperature for 48 h.¹ After the furnace cooled, the material was crushed using a mortar and pestle, and then returned to the quartz tube.¹ The tube was then evacuated and reheated to 850 °C at a rate of 10 °C min⁻¹ and then held for 16 h.¹ 1 g of Mo_2Ga_2C powder was washed in a 20 mL solution of 12 M hydrochloric acid (HCl) (technical grade, Fisher Scientific, Fair Lawn, NJ) for 48 h at room temperature (RT) while being stirred with a Teflon coated magnet on a stirring plate to remove any unreacted Ga.¹ The powders were washed with deionized (DI) water several times until a pH of 6 was reached, then filtered to dry the powder using a nanoporous polypropylene membrane (3501 Coated PP, 0.064 µm pore size, Celgard, USA).

Synthesis of delaminated Mo_2CT_x : 2 g of Mo_2Ga_2C powder was added to a bottle with 20 mL of 14 M HF solution (Fisher Scientific, Fair Lawn, NJ). Afterwards, the bottle was placed in an oil bath over a stirring hot plate and held at 55 °C for 72 h with stirring using a Teflon coated magnet in the bottle. The resulting suspension was washed with DI water several times until a pH of at least 6 was reached. Each time water was added to the centrifuge tube containing the product and water; it was then shaken before centrifuging at 3500 rpm for 2 min. The powder was then filtered and dried over a nanoporous polypropylene membrane (3501 Coated PP, 0.064 µm pore size, Celgard, USA). This product is referred to as multilayered Mo_2CT_x . 1 g of the powder was mixed with 10 mL of an aqueous solution of 54-56 wt.% tetrabutylammonium hydroxide (TBAOH) (Sigma Aldrich, St. Louis, MO, USA). The mixture was stirred for 1 h at RT. The mixture was then washed with 40 mL of DI water and centrifuged at 3500 rpm for 5 min. The mixture was bath

sonicated in a bottle of 50 mL of deionized water for 1 h. The suspension was then centrifuged at 3500 rpm for 1 h. The supernatant suspension was then filtered over nanoporous polypropylene membrane (3501 Coated PP, 0.064 μ m pore size, Celgard, USA). This yielded a film of delaminated Mo₂CT_x (d-Mo₂CT_x).

2 Synthesis of V₂C and V₂CT_x

Synthesis of V_2AlC : V_2CT_x was synthesized by etching a V_2AlC powder precursor. V_2AlC powders were synthesized mixing -325 mesh vanadium, V and Al powders (both Alfa Aesar, Ward Hill, MA, 99.5 wt.% purity) and graphite, C (Alfa Aesar Ward Hill, USA, 99 wt.% purity; -300 mesh) were mixed in a 2.0 : 1.1 : 1.0 molar ratio.² The mixture was mixed and then placed in an alumina crucible boat which was placed in a tube furnace. The mixture was heated to 1600 °C at a rate of 5 °C/min under flow of argon, Ar, and held at that temperature for 4 h before cooling to RT. The resulting sintered blocks were milled using a titanium-nitride-coated milling bit to form powder. The powder was then sieved so that -400 mesh size particles were used for further treatment.

Synthesis of delaminated V_2CT_x : 2 g of V₂AlC powder was added to a bottle with 20 mL of 14 M HF solution (Fisher Scientific, Fair Lawn, NJ). Afterwards, the bottle was placed in an oil bath over a stirring hot plate and held at 35 °C for 24 h with stirring using a Teflon coated magnet in the bottle. The resulting suspension was washed with DI water several times until a pH of at least 6 was reached. Each time water was added to the centrifuge tube containing the product and water, it was then shaken before centrifuging at 3500 rpm for 2 min. The powder was then filtered and dried over a nanoporous polypropylene membrane (3501 Coated PP, 0.064 µm pore size, Celgard, USA). This product is referred to as multilavered V_2CT_x . 1 g of the resulting powder was mixed with 10 mL of an aqueous solution of 54-56 wt.% tetrabutylammonium hydroxide (TBAOH) (Sigma Aldrich, St. Louis, MO, USA). The mixture was stirred for 1 h at RT. The mixture was then washed with 40 mL of DI water and centrifuged at 3500 rpm for 5 min. The mixture was washed three times. After washing, the powder sediment was bath sonicated in a bottle of 50 mL of deionized water for 1 h. The suspension was then centrifuged at 3500 rpm for 1 h. The supernatant suspension was then filtered over nanoporous polypropylene membrane (3501 Coated PP, 0.064 µm pore size, Celgard, USA). This yielded a film of delaminated V_2CT_x (d-V₂CT_x).

Ammoniation of delaminated MXene films: Ammonia, NH₃, gas (anhydrous grade 4, Airgas, Philadelphia, PA, USA) flowing through a quartz tube in a Carbolite (Hope Valley, UK) tube furnace at a flowrate of 300 cm³/min was used to nitridize the MXene films. The samples were heated to 400 °C, 500 °C or 600 °C at a rate of 5 °C/min and dwelled at the target temperature for 1 h.

3 Scanning Electron Microscopy

To examine the morphology and composition of the nitrides, scanning electron microscopy (SEM) was performed in a Zeiss Supra 50VP (Carl Zeiss SMT AG, Oberkochen, Germany) equipped with an energy-dispersive X-ray spectrometer (EDX) (Oxford EDS, with INCA software). Most EDX scan were obtained at low magnification ($100 \times to 200 \times$) on at least 3 different 0.5 mm × 0.5 mm areas for 60 s on each location. Atomic ratios determined from atomic percentages were calculated by averaging the atomic percentages of all points scanned. To determine if oxides were formed after ammoniation at 600 °C, micrographs of the Mo₂N and

 V_2N were taken, shown in Fig. S1. No separate cubic particles were found on the nitrides, confirming that no separate oxides were formed as a byproduct of this procedure or from oxidation of the nitride products.

Fig. S1. Low and high magnification SEM images of Mo_2N and V_2N produced after annealing Mo_2CT_x and V_2CT_x films, respectively, in ammonia at 600 °C for 1 h. The absence of any cubic particles confirms that no oxides are formed from oxidation of the precursor MXene. (a) Low magnification of Mo_2N . (b) High magnification image of Mo_2N in (a). (c) Low magnification of V_2N . (d) High magnification image of V_2N in (c).

4 X-ray Photoelectron Spectroscopy

X-ray photoelectron spectroscopy (XPS) spectra of the Mo_2NT_x and V_2NT_x films were measured by a spectrometer (Physical Electronics, VersaProbe 5000, Chanhassen, MN) employing a 100 µm monochromatic Al K α X-ray beam to irradiate each sample's surface. Photoelectrons were collected by a takeoff angle of 180° between the sample surface of each sample and the path to the analyzer. Charge neutralization was applied using a dual beam charge neutralizer irradiating low-energy electrons and ion beam to avoid shift in the recorded BE. High-resolution spectra for Mo 3d, C 1s, Mo $3p_{3/2}$, N 1s, V 2p and O 1s were taken at a pass energy of 11.75 eV with a step size of 0.05 eV. The binding energy scale of all XPS spectra was references to the Fermi-edge (E_F), which was set to a BE of zero eV for each sample. The films were mounted on doublesided tape and were electrically grounded using a copper wire. Quantification and deconvolution of the core-level spectra was performed using a software package (CasaXPS Version 2.3.16 RP 1.6). Background contributions to the measured intensities were subtracted using a Shirley function prior to quantification and deconvolution. For the Mo₂NT_x film's spectra, intensity ratios of the $3d_{5/2}$ and $3d_{3/2}$ peaks were constrained to be 3:2. For the V₂NT_x film's spectra, intensity ratios of the $2p_{3/2}$ and $2p_{1/2}$ peaks were constrained to be 2:1. The components of all regions scanned for for Mo₂NT_x are listed in Table S1. For Mo₂N, the high-resolution spectrum of the Mo 3d region (Figure S2a) were fitted by components corresponding to the two species N–Mo–T_x and MoO₃. It is important to note that, for both the Mo₂N and V₂N, no F in XPS after the ammoniation of their MXene precursor, where F functional groups are typically detected.³ The components of all regions scanned for for V₂NT_x are listed in Table S2. For V₂NT_x, the high-resolution spectrum of the V 2p region (Figure S2d) were fitted by components corresponding to the following four species: metallic V, V³⁺, V⁴⁺ and V⁵⁺.

Region	BE [eV]	FWHM [eV]	Fraction	Assigned to	Reference
Mo $3d_{5/2} (3d_{3/2})$	229.0 (232.2)	1.0 (1.1)	0.21	N-Mo-T _x	4
	231.6 (235.3)	0.6 (1.1)	0.01	MoO ₃	1
	283.1	0.9	0.01	C-Mo-T _x	4
C 1s	285.0	1.5	0.18	C–C	1
	286.6	1.4	0.03	CH _x /C–O	1
	288.7	2.0	0.02	COO	1
	395.1	2.5	0.21	Mo–N (Mo 3p _{3/2})	4
N 1s / Mo 3p _{3/2}	397.5	1.5	0.22	Mo-N (N 1s)	4
	399.2	2.0	0.02	MoO ₃ (Mo 3p _{3/2})	1
	530.9	1.4	0.03	N–Mo–O _x	1
O 1s	532.1	1.4	0.03	N–Mo–(OH) _x	1
	530.1	1.2	0.02	MoO3	1
	533.6	1.5	0.01	N-Mo-OH-H ₂ O	1
Total			1.00		

Table S1. Summary of global atomic compositions of the high resolution XPS region fittings of multilayered Mo_2NT_x , shown in Fig. 1c and Fig. S2a-c.

Table S2. Summary of global atomic compositions of the high resolution XPS region fittings of multilayered V_2NT_x , shown in Fig. 1d and Fig. S2d-f.

Region	BE [eV]	FWHM [eV]	Fraction	Assigned to	Reference
	284.8	1.6	0.18	C–C	5
C 1s	286.3	1.4	0.04	$CH_x/C-O$	5
	288.0	2.0	0.03	Č–N	5
N 1s	396.9	1.2	0.18	V–N	6
	398.3	3.2	0.11	N–C	7
V 2p _{3/2} (2p _{1/2})	513.2 (520.2)	0.6 (1.2)	0.02	V^{0^+}	8
	514.1 (521.3)	1.8 (2.2)	0.21	V ³⁺ (V–N)	9
	516.0 (523.0)	1.5 (1.5)	0.09	\mathbf{V}^{4+}	8
	517.1 (524.6)	1.5 (1.8)	0.04	V^{5+}	8
O 1s	530.1	1.7	0.07	V–O	8
	532.0	2.0	0.03	N–O	10
Total			1.00		

Figure S2. (a-c) High resolution XPS spectra for Mo_2NT_x synthesized by annealing delaminated Mo_2CT_x at 600 °C for 1 h in NH₃ (ammonia). Regions for Mo_2NT_x shown are (a) Mo 3d, (b) O 1s and (c) C 1s, showing evidence of Mo–N bonding in (a). (d-f) High resolution XPS spectra for V_2NT_x synthesized by annealing delaminated V_2CT_x at 600 °C for 1 h in ammonia. Regions scanned for V_2NT_x shown are (d) V 2p, (e) O 1s and (f) C 1s.

5 X-ray Diffraction

X-ray diffraction (XRD) was carried out on the Mo₂CT_x, V₂CT_x, Mo₂NT_x and V₂NT_x films using a Rigaku Smartlab (Tokyo, Japan) diffractometer with Cu-K α radiation (40 kV and 44 mA); step size 0.02°, 3-50° 2 θ range, step time of 1 s, 5 × 10 mm² window slit. To investigate the change in crystal structure as temperature of ammoniation increases, XRD was performed after ammoniation of the Mo₂CT_x and V₂CT_x at 400 °C or 500 °C for 1 h, shown in Fig. S3. For Mo₂NT_x, the basal plane (002) MXene peak increases from 2 θ = 7° to 9°, indicating that the layered sheets are being annealed and more closely spaced. A peak at 25°, the source of which is uncertain, becomes more prominent but vanishes if the Mo₂CT_x is annealed at 600 °C instead of the temperatures below 600 °C. For the V₂NT_x patterns, the broad peak at 2 θ = 25° can be attributed to the glass slide on which the films were scanned.¹¹ A peak at 37 °C becomes more and more prominent as ammoniation temperature increases, which may possibly be a competing non-MXene nitride phase.

Figure S3. XRD patterns of (a) Mo_2CT_x and (b) V_2CT_x before and after (Mo_2NT_x and V_2NT_x) annealing in ammonia gas at various temperatures for 1 h. (a) For Mo_2NT_x , as the temperature of ammoniation increases, the (002) peak shifts from ~7° to ~11° at 600 °C. At ammoniation temperatures below 600 °C, a peak at about 25° becomes more prominent, but vanishes when nitridation temperature increases to 600 °C. (b) For V_2NT_x , as temperature of ammoniation increases, the peak at 37°, corresponding to a cubic VN, becomes more prominent.

6 X-ray Pair Distribution Function (PDF) Analysis

Synchrotron X-ray total scattering experiments were carried out at the X-ray Powder Diffraction (XPD) beamline, 28-ID-2, at the National Synchrotron Light Source II (NSLS II) at Brookhaven National Laboratory (BNL). The samples were crushed into powders, packed into 1 mm inner diameter kapton capillary tubes and measured at 100 K using a flowing nitrogen cryocooler. The rapid acquisition PDF technique (RaPDF)¹² was used with an X-ray energy of 67.14 keV ($\lambda = 0.1847$ Å). A large area 2D Perkin Elmer detector (2048 × 2048 pixels and 200 × 200 µm pixel size) was mounted orthogonal to the beam path with sample-to-detector distance of 205.39 mm behind the samples. The raw 2D data were azimuthally integrated and converted to 1D intensity versus the magnitude of the scattering momentum transfer *Q* using FIT2D.¹³ *Q* = $4\pi \sin \theta/\lambda$ for a scattering angle of 2θ and an X-ray wavelength of λ . The software xPDFsuite^{14, 15} was used to correct and normalize the diffraction data and then Fourier transform them to obtain the experimental PDF, *G*(*r*), according to:

$$G(r) = \frac{2}{\pi} \int_{Q_{min}}^{Q_{max}} Q[S(Q) - 1] \sin(Qr) \, dQ$$

where the total scattering structure function S(Q) is the properly corrected and normalized powder diffraction intensity measured from Q_{min} to Q_{max} , governed by the experimental setup.¹⁶ G(r) gives the probability of finding a pair of atoms separated by a distance of r. Nickel was measured as the standard material to calibrate the sample-to-detector distance and to determine the Q_{damp} and Q_{broad} which are parameters that correct the PDF envelope function for the instrument resolution effects.^{17, 18} The refined values $Q_{damp} = 0.0369$ Å⁻¹ and $Q_{broad} = 0.0131$ Å⁻¹ were fixed in the subsequent structure refinements of the PDF data. Structural modeling and refinement of PDF data was carried out using the PDFgui¹⁸ and DiffPy-CMI programs.¹⁹ Leastsquares fits were performed by minimizing the fit residual, with the goodness-of-fit R_{ω} , given by:

$$R_{\omega} = \sqrt{\frac{\sum_{i=1}^{n} [G_{obs}(r_i) - G_{calc}(r_i, P)]^2}{\sum_{i=1}^{n} G_{obs}(r_i)^2}}$$

where G_{obs} and G_{calc} are the experimental and calculated PDFs and *P* is the set of parameters refined in the model.

6.1 Structure Refinement of V₂N

The initial structural model for the V₂N was a trigonal *P*-31*m* structure and the atoms are on the following special positions: V (x, 0, z), N1 (1/3, 2/3, 1/2), and N2 (0, 0, 0) shown in Fig. S4.²⁰ The structure refinements were performed over full-*r* (1.5 to 60 Å), low-*r* (1.5 to 20 Å), and high-*r* (20 to 60 Å) ranges separately, as shown in Fig. S5.

Figure S4. Trigonal V₂N (space group P-31m) structure projected along the [001] direction. Red atoms indicate V, blue atoms indicate N.

Figure S5. PDF fits (red curve) of the V₂N structure model to the measured data (blue) with difference curve offset below (green) over (a) full-*r* (1.5 to 60 Å), (b) low-*r* (1.5 to 20 Å), and (c) high-*r* (20 to 60 Å) ranges.

Fitting Range (Å)	1.5 to 60	1.5 to 20	20 to 60
R _w	0.233	0.261	0.122
a (Å)	5.0421	5.0415	5.0423
c (Å)	4.3712	4.3717	4.3714
<i>x</i> (V)	0.6670	0.6671	0.6705
<i>z</i> (V)	0.7452	0.7449	0.7500
$U_{iso}(\mathbf{V})$ (Å ²)	0.0037	0.0033	0.0034
$U_{iso}(\mathbf{N})$ (Å ²)	0.0326	0.0242	0.0144

Table S3. Structure refinement results of V_2N structure model in the *r*-range of 1.5 to 60 Å, 1.5 to 20 Å, and 20 to 60 Å.

 R_{ω} of the high-*r* region (20 to 60 Å) fit, 0.122, is much lower than that of low-*r* region (1.5 to 20 Å), 0.261. This indicates that the V₂N (space group *P*-31*m*) structural model fits the long-range (20 to 60 Å) features well, but it does not describe the local structure completely. Because of this, a two-phase fit over the low-*r* range (1.5 to 20 Å) was then attempted.

To improve the local structure refinement, another phase, VN (space group is Fm-3m), shown in Fig. S6, was added as a second phase with a finite particle size. The atoms are on the following positions: V at (0, 0, 0) and N at (1/2, 1/2, 1/2).²¹

Figure S6. Cubic VN (space group Fm-3m) structure projected along the [111] direction. Red atoms indicate V, blue atoms indicate N.

Figure S7. PDF fit (red curve) of the V_2N+VN mixed phase model to the measured data (blue) with difference curve offset below (green).

Table S4. Structure refinement result of $V_2N + VN$ structure model in the *r*-range of 1.5 to 20 Å. For the VN phase, its lattice parameters were constrained as a = c due to cubic symmetry, and its isotropic atomic displacement parameters $U_{iso}(V)$ and $U_{iso}(N)$ were constrained the same as those in the V₂N phase. Spdiameter is the particle diameter parameter for PDF shape damping function.

Fitting Range (Å)	1.5 to 20Å			
R _w	0.163			
Phase	V ₂ N	VN		
Mass Ratio	68%	32%		
<i>a</i> (Å)	5.0382	4.1328		
c (Å)	4.3748	4.1328		
<i>x</i> (V)	0.6680	-		
<i>z</i> (V)	0.7511	-		
$U_{iso}\left(\mathrm{V}\right)\left(\mathrm{\AA}^{2} ight)$	0.0033	0.0033		
U_{iso} (N) (Å ²)	0.0110	0.0110		
Spdiameter (Å)	-	22.3461		

Comparing with the structure refinement result of V₂N in Table S2, the two-phase fit over the low-*r* range, 1.5 to 20 Å, ($R_{\omega} = 0.163$) describes the local structure much better than the single-phase V₂N fit over the low-*r* range ($R_{\omega} = 0.261$). The PDF fit of this mixed phase model over the full-*r* range (1.5 to 60 Å) is shown in Fig. 2b in the main text. The structure of Vanadium compound can be described as trigonal V₂N along with nanosized cubic VN.

6.2 Structure Refinement of Mo₂N

The Mo₂N single slab model (Fig. 2c in the main text) was initially built from the precursor Mo_2C MXene ($P6_3/mmc$) structure by replacing N atoms with C atoms at the same atomic positions, then cutting a single slab of atoms from its respective bulk crystal structure. The atoms are on the following special positions: Mo1 at (1/3, 2/3, z), Mo2 at (0, 0, z), and N (1/3, 2/3, z). We used the Debye scattering equation²² to calculate the PDF of single slab using the DiffPy-CMI program.¹⁹ The intralayer structure was refined to better fit the measured PDF of Mo₂N over the low-*r* range (1.5 to 5.5 Å). Starting from the carbide Mo₂C MXene precursor structure, the Mo₂N slab is squeezed along in-plane dimensions and extended along the out-of-plane dimension (z-direction) such that the distance between nearest Mo atoms on the same z-coordinate plane, for example Mo1-Mo2 in Fig. 2c, decreases from 3.3 Å to 2.9 Å, while the distance between nearest Mo atoms separated along the z-direction (but still within a single slab, e.g. Mo1-Mo3 in Fig. 2c) increases from 2.7 Å to 3.2 Å. The simulated PDF of the initial Mo₂N model before structure refinement, which has the same atomic positions as the precursor Mo₂C

model, is shown by the brown curve in Fig. 2d. It shows that ammoniation of Mo_2C changes the structure. The Mo_2N structure has the opposite of the distortion to the one in Mo_2C where the out-of-plane Mo-Mo distances are shorter than the in-plane Mo-Mo distances.

7 Transmission Electron Microscopy

Transmission Electron Microscopy (TEM) images were performed on JEOL2100F High Resolution TEM, at an accelerating voltage 200 kV. For TEM specimens, the multilayered MXenes (Mo_2CT_x and V_2CT_x) (not the delaminated MXenes as with all other measurements in this study) were ammoniated at 600 °C for 1 h. The nitride powders were subsequently stirred in an ethanol solution to form a diluted colloidal solution of nitride flakes. The TEM specimens were then prepared by dropping 3 drops of this colloidal solution onto a copper grid and drying in air.

8 Electrical Resistivity Measurements

Electronic properties of Mo_2CT_x and V_2CT_x before and after Ar and NH₃ heat treatment were studied in a Quantum Design EverCool II Physical Property Measurement System (PPMS). Freestanding films with a thickness of about 20 µm of each sample were cut to a 5 × 5 mm squares, and silver wires were attached onto each film in a 4-point probe geometry using adhesive silver paint. In-plane temperature-dependent resistivity was recorded from room temperature (300 K) down to 10 K in vacuum (~20 Torr) in a helium environment. The resistivity values were calculated according to:

$$\rho = \frac{\pi}{\ln 2} x R x t x FF$$

Where ρ = resistivity (Ω cm), R = resistance (Ω), t = film thickness (cm), FF = a correction factor based on the ratio of the probe distance to the film's dimension.

Figure S8. A zoom-in portion of the temperature-dependent resistivity of (a) Mo_2CT_x (Ar) and Mo_2NT_x and (b) V_2CT_x (Ar) and V_2NT_x .

References and Notes

- J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May and Y. Gogotsi, *Advanced Functional Materials*, 2016, **26**, 3118-3127.
- 2 M. Naguib, J. Halim, J. Lu, K. M. Cook, L. Hultman, Y. Gogotsi and M. W. Barsoum, *Journal of the American Chemical Society*, 2013, **135**, 15966-15969.
- J. Halim, S. Kota, M. R. Lukatskaya, M. Naguib, M. Q. Zhao, E. J. Moon, J. Pitock, J. Nanda, S. J. May and Y. Gogotsi, *Advanced Functional Materials*, 2016.
- 4 R. Sanjinés, C. Wiemer, J. Almeida and F. Levy, *Thin Solid Films*, 1996, **290**, 334-338.
- 5 J. Halim, K. M. Cook, M. Naguib, P. Eklund, Y. Gogotsi, J. Rosen and M. W. Barsoum, *Applied Surface Science*, 2016, **362**, 406-417.
- 6 M. Romand and M. Roubin, *Analusis*, 1976, **4**, 308-312.
- 7 A. P. Dementjev, A. de Graaf, M. C. M. van de Sanden, K. I. Maslakov, A. V. Naumkin and A. A. Serov, *Diamond and Related Materials*, 2000, **9**, 1904-1907.
- 8 J. Kasperkiewicz, J. Kovacich and D. Lichtman, *Journal of electron spectroscopy and related phenomena*, 1983, **32**, 123-132.
- 9 A. Glaser, S. Surnev, F. Netzer, N. Fateh, G. Fontalvo and C. Mitterer, *Surface Science*, 2007, **601**, 1153-1159.
- 10 A. Pashutski and M. Folman, *Surface Science*, 1989, **216**, 395-408.
- 11 M. Stoica, G. N. B. M. de Macedo and C. Rüssel, *Optical Materials Express*, 2014, 4, 1574-1585.
- 12 P. J. Chupas, X. Qiu, J. C. Hanson, P. L. Lee, C. P. Grey and S. J. Billinge, *Journal of Applied Crystallography*, 2003, **36**, 1342-1347.
- 13 A. Hammersley, S. Svensson, M. Hanfland, A. Fitch and D. Hausermann, *International Journal of High Pressure Research*, 1996, **14**, 235-248.
- 14 P. Juhás, T. Davis, C. L. Farrow and S. J. Billinge, *Journal of applied Crystallography*, 2013, **46**, 560-566.
- 15 X. Yang, P. Juhas, C. L. Farrow and S. J. Billinge, *arXiv preprint arXiv:1402.3163*, 2014.
- 16 T. Egami and S. J. Billinge, *Underneath the Bragg peaks: structural analysis of complex materials*, Newnes, 2 edn., 2012.
- 17 T. Proffen and S. Billinge, *Journal of Applied Crystallography*, 1999, **32**, 572-575.
- 18 C. Farrow, P. Juhas, J. Liu, D. Bryndin, E. Božin, J. Bloch, T. Proffen and S. Billinge, *Journal of Physics: Condensed Matter*, 2007, **19**, 335219.
- 19 P. Juhás, C. L. Farrow, X. Yang, K. R. Knox and S. J. Billinge, *Acta Crystallographica*. *A*, 2015, **71**, 562-568.
- 20 A. N. Christensen and B. Lebech, *Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry*, 1979, **35**, 2677-2678.
- 21 S. Hosoya, T. Yamagishi and M. Tokonami, *Journal of the Physical Society of Japan*, 1968, **24**, 363-367.
- 22 P. Debye, Annalen der Physik, 1915, **351**, 809-823.