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Appendix A: A nonlinear shear lag model 

Fig. S1 (a) Schematics of the brick (graphene)-and-motor (crosslinks) structure and 

representative volume element (RVE, as highlighted as the dash box); (b) Schematics of a 

nonlinear shear-lag model with elastic-perfectly-plastic interface under tension (plastic zone, as 

highlighted as the red zone; elastic zone, as highlighted as the green zone).

Fig. S1 shows a continuum model proposed in our previous work.1 In this model, 

the tensile stiffness , strength  of graphene sheet and the shear modulus , gD cr mG

strength  of the interlayer are expressed as functions of crosslink density  (  is f d d

defined as the ratio of the number of functional groups over that of carbon atoms in 

graphene sheets), respectively, and these functional relationships can be obtained by 

atomistic simulations. The out-plane deformation is neglected, thus the stiffness of 

graphene sheet is defined as  (  is Young’s modulus), where  is the g b bD E h bE bh
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graphene sheet thickness. The representative volume element (RVE) under uniaxial 

tension is simplified as shown in Fig. S1(b), the length of the graphene sheet is  and bl

the interlayer crosslinks are considered as a continuum media. We use an elastic 

perfectly plastic interface with shear modulus , shear strength , yield strain mG f

and failure strain  to characterize the interlayer interactions between graphene c
e

f
p

sheets. And the plastic zone with the length  is marked by red color and the elastic a

zone is marked by green color. The overall mechanical properties of graphene-based 

artificial nacre nanocomposites is illustrated through nonlinear shear-lag analysis for 

RVE.

When the RVE under uniaxial tension, the mechanical equilibrium is governed by
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where  is the interlayer distance.mh

From eqns. (A.1) and (A.2), we have the governing equation for the elastic zone of 

platelet #1 and platelet #2，which is expressed as
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And the governing equation for the plasticity zone of platelet #1 and platelet #2 is 

expressed as
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We define  and . From eqns. (A.3a) and (A.3b), the normalized / ba a l / bx x l

equations are given as
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length below which the shear stress is almost uniform along the interface. The 

solutions of eqn. (A.4) can be written as
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To get the displacement fields of the RVE, we need to determine thirteen unknown 

variables,  appeared in eqn. (A.5) from the boundary conditions. 1 2 3 12, , .... ,c c c c a

Firstly, the stress and displacement in the graphene sheet #1 and #2 are continuous at 



 and . They lead to eight equationsx a 0.5x a 
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There are four boundary conditions for RVE
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Substituting eqns. (A.6), (A.7) into eqn. (A.5),  to  can be determined by 1c 12c

,  and / bl   2k 
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The value of  can be determined by continuity of the shear stress a



 at the point . From eqn. (A.3), the shear stress of 2
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interface between graphene sheet #1 and #2 is
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The shear stress is  at the point , sof  x a
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Substituting the forms of  and  in eqn. (A.8) into eqn. (A.10), we get the 5c 6c

functional relationship between the applied dimensionless displacement  and the 

plastic zone size a
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In the regular structure, the average strain of the RVE is
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Further, the tensile strength of the RVE depends on the failure mode. There are two 

failure modes of graphene-derived materials,2 when the maximum shear strain of 
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Further, if graphene failure occurs firstly, the strength of the RVE is predicted as 
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Appendix B: The toughness of graphene-based artificial nacres with brittle 

interface
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Fig. S2 Plots of the calculated effective toughness of graphene-based artificial nacres 

with brittle interface as a function of the crosslink density under different sizes of the 

graphene sheets for (a) VCB1, (b) VCB2, (c) CB and (d) HB crosslinks. 
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