Supporting Information for

2D self-assembled MoS₂/ZnIn₂S₄ heterostructure for efficient photocatalytic

hydrogen evolution

Weijia Li, Zhaoyong Lin and Guowei Yang*

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, School of Physics, Sun

Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.

*Corresponding author: <u>stsygw@mail.sysu.edu.cn</u>

Figure 1. EDS spectra of sample ZIS-1.5.

Figure 2. XRD patterns of $ZnIn_2S_4$ with different weight ratios of MoS₂. Inset: the enlarged XRD pattern in the range of 10 to 20 degree of sample ZIS-6.0.

Figure 3. (a) AFM image of $ZnIn_2S_4$ on sapphire substrate. (b) Height profiles along the white lines in (a). (c) The thickness distribution graph of $ZnIn_2S_4$ nanosheets collected from 80 nanosheets.

Figure 4. (a) AFM image of few-layer MoS_2 . (b) The thickness distribution graph of MoS_2 collected from 80 nanosheets. (c, d) Height profiles along the red marked line and blue marked line.

Figure 5. HRTEM image of $MoS_2/ZnIn_2S_4$ heterostructure.

Figure 6. The optical image of $ZnIn_2S_4$ (left) and 1.5% $MoS_2/ZnIn_2S_4$ (right).

Figure 7. Valence band XPS spectra of $ZnIn_2S_4$.

Figure 8. Zeta potential of $ZnIn_2S_4$ suspension dispersed in deionized water.

Entry	Photocatalyst	Light source	Sacrificial reagent	$\begin{array}{c} H_2 \text{ evolution rate} \\ (\mu mol \ h^{-1} \ g^{-1}) \end{array}$	Ref
1	RGO/La-ZnIn ₂ S ₄	350W Xe lamp $(\lambda > 420 \text{ nm})$	Na ₂ S-Na ₂ SO ₃	2255	1
2	MoSe ₂ /ZnIn ₂ S ₄	$300W Xe lamp (\lambda > 400 nm)$	Lactic acid	6545	2
3	Graphene/ZnIn ₂ S ₄	350W Xe lamp $(\lambda > 420 \text{ nm})$	Triethanolamine	2640.8	3
4	MoS ₂ -Graphene /ZnIn ₂ S ₄	300W Xe lamp $(\lambda > 420 \text{ nm})$	Na ₂ S-Na ₂ SO ₃	4169	4
5	MoS ₂ /Cu-ZnIn ₂ S ₄	300W Xe lamp (λ > 420 nm)	Ascorbic	5463	5
6	MoS ₂ -RGO/ZnO	300W Xe lamp (λ > 380 nm)	Na ₂ S-Na ₂ SO ₃	288.4	6
7	MoS ₂ /g-C ₃ N ₄ /GO	300W Xe lamp (AM1.5)	Na ₂ SO ₃	1650	7
8	MoS ₂ /ZnIn ₂ S ₄	300W Xe lamp $(\lambda > 400 \text{ nm})$	Triethanolamine	8898	This work

Table 1. The photocatalytic H_2 evolution performance comparison of the catalysts from the different references.

References

- 1. R. Zhu, F. Tian, S. Che, G. Cao and F. Ouyang, *Renewable Energy*, 2017, **113**, 1503-1514.
- 2. M.-Q. Yang, Y.-J. Xu, W. Lu, K. Zeng, H. Zhu, Q.-H. Xu and G. W. Ho, *Nature communications*, 2017, **8**, 14224.
- 3. Y. Xia, Q. Li, K. Lv, D. Tang and M. Li, *Applied Catalysis B: Environmental*, 2017, **206**, 344-352.
- Y.-J. Yuan, J.-R. Tu, Z.-J. Ye, D.-Q. Chen, B. Hu, Y.-W. Huang, T.-T. Chen, D.-P. Cao, Z.-T. Yu and Z.-G. Zou, *Applied Catalysis B: Environmental*, 2016, 188, 13-22.
- Y.-J. Yuan, D. Chen, J. Zhong, L.-X. Yang, J. Wang, M.-J. Liu, W.-G. Tu, Z.-T. Yu and Z.-G. Zou, *Journal of Materials Chemistry A*, 2017, 5, 15771-15779.
- 6. Z. Guan, P. Wang, Q. Li, Y. Li, X. Fu and J. Yang, *Chemical Engineering Journal*, 2017, **327**, 397-405.
- 7. M. Wang, P. Ju, J. Li, Y. Zhao, X. Han and Z. Hao, ACS Sustainable Chemistry & Engineering, 2017, 5, 7878-7886.