Supporting Information

Near-infrared optical and X-ray computed tomography dual-modal imaging probe based on novel lanthanide-Doped K_{0.3}Bi_{0.7}F_{2.4} upconversion nanoparticles

Ran An,^{a,#} Pengpeng Lei,^{a,b,#} Peng Zhang,^c Xia Xu,^{a,b} Jing Feng,^{a,*} and Hongjie Zhang ^{a,*}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

^c Department of Radiology, The Second Hospital of Jilin University, Changchun 130041, China

[#] These authors contributed equally to this work

* Corresponding authors. Tel.:+86 431 85262127; fax: +86 431 85698041. E-mail addresses: *fengj@ciac.ac.cn (J. Feng), hongjie@ciac.ac.cn (H. Zhang)*.

Fig. S1 The size histogram of BYT UCNPs.

Fig. S2 Energy-dispersive X-ray (EDX) spectra of $K_{0.3}Bi_{0.7}F_{2.4}$:x% Yb³⁺/0.5% Tm³⁺ UCNPs (x = 5, 10, 15, 20, 25).

Fig. S3 X-ray photoelectron spectroscopy (XPS) analysis of BYT UCNPs. (a) survey, (b) Yb 4d, and (c) Tm 4d.

Fig. S4 (a) The UCL spectra of $K_{0.3}Bi_{0.7}F_{2.4}$:x% Yb³⁺/2% Er³⁺ (x = 5, 10, 15, 20). (b) The UCL spectra of $K_{0.3}Bi_{0.7}F_{2.4}$:x% Yb³⁺/2% Ho³⁺ (x = 5, 10, 15, 20, 25).

As shown in Fig. S4(a), $K_{0.3}Bi_{0.7}F_{2.4}:x\% Yb^{3+}/2\% Er^{3+}$ (x = 5, 10, 15, 20, 25) exhibit two UC bands of green and red emissions in the spectroscopic range of 510-565 nm and 635-680 nm, which can be assigned to the ${}^{2}H_{11/2}/{}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ and ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ transitions of Er^{3+} ions. The intensity of emission peaks increases with Yb³⁺ ions concentration changing from 5 to 15%, and then decrease at the Yb³⁺ concentration of 20%. It is worthwhile to mention that a yellow emission was observed in $K_{0.3}Bi_{0.7}F_{2.4}:15\% Yb^{3+}/2\% Er^{3+}$ by the naked eyes.

In the emission spectra of $K_{0.3}Bi_{0.7}F_{2.4}$:x% Yb³⁺/2% Ho³⁺ (x = 5, 10, 15, 20, 25) (Fig. S4 (b)), the green emission at 525-562 nm corresponds to ${}^{5}S_{2} \rightarrow {}^{5}I_{8}$ transitions and the red emission region at 628-677 nm is ascribed to ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ transition of Ho³⁺. Variations in the Yb³⁺ concentration (5-25%) lead to corresponding changes in the green (${}^{5}S_{2} \rightarrow {}^{5}I_{8}$) and red (${}^{5}F_{5} \rightarrow {}^{5}I_{8}$) spectral region, accompanied by changes of fluorescence emission. The UCL intensity achieved the maximum when the Yb³⁺ ions concentration reaches at 20%.

Fig. S5 (a) FTIR spectra of BYT UCNPs and citrate-coated BYT UCNPs. (b) Thermogravimetric analysis (TGA) of citrate-coated BYT UCNPs.

Fig. S5(a) shows the BYT UCNPs and citrate-coated BYT UCNPs both have the broad absorption band located at 3430 cm⁻¹ corresponding to the O–H stretching vibration of water on the surface. For the citrate-coated BYT UCNPs, the weak absorption peaks (2960 and 2926 cm⁻¹) and the strong absorption peaks (1576 and 1396 cm⁻¹) are attributed to the C–H bond vibration of the surface coated citric acid molecules. The weak absorption peaks at 1248 and 1075 cm⁻¹ are attributed to the C-C bond vibration of citric acid molecules. In addition, the O-H bond vibration of carboxylic group was displayed at 907 and 850 cm⁻¹. On the basis of the above results, the citric acid ligands have been successfully coated on the surface of UCNPs. The weight loss of citrate-coated BYT UCNPs was about 13.3 wt%, indicating the

amount of citric acid molecules on the surface of UCNPs (Fig. S5(b)).

Fig. S6 *In vitro* cell viability of HeLa cells after incubation with citrate-coated BYT UCNPs for 24 h using standard MTT colorimetric assay.

Fig. S7 The hydrodynamic size of BYT UCNPs.

Fig. S8 Whole-body NIR-to-NIR UCL imaging of a mouse after intravenous injection of the citrate-coated BYT UCNPs. (a, d, g) bright-field images. (b, e, h) UCL images. (c, f, i) corresponding overlay bright-field and UCL images of (a, d, g and b, e, h). The (d-i) images are *ex vivo* UCL imaging after injection for 2 h. 1, liver; 2, heart; 3, spleen; 4, kidney.

Fig. S9 The HU values of different organs of a mouse after intravenous injection of citratecoated BYT UCNPs at timed intervals.