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Fig. S1 Photographs of the glucose/Sn—Fe hydrogel (a), urea/Sn—Fe hydrogel (b), glycine/Sn—Fe
suspension (c¢), HMTA/Sn—Fe suspension (d), and FTIR spectra of the glucose/Sn—Fe aerogel (e),

urea/Sn—Fe aerogel (f), freeze-dried glycine/Sn—Fe (g) and HMTA/Sn—Fe (h) suspensions.
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Fig. S2 Nitrogen adsorption/desorption isotherms (a) and pore size distribution (b) of the

nanoporous Sn—Fe@C network.
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Fig. S3 EDS spectrum of the nanoporous Sn—Fe@C network.
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Fig. S4 XRD pattern of the nanoporous Sn—Fe@C network after TGA.

As seen from TGA curve (Fig. 5b), the weight variation of Sn—Fe@C network can be mainly
attributed to the oxidation of Sn—Fe alloy and carbon components during TGA tests. The oxidation
of Sn—Fe alloy leads to a weight increase, whereas the removal of carbon component leads to a
weight decrease of the product. Fig. S4 shows the XRD pattern of the nanoporous Sn—Fe@C
network after TGA. The observed crystalline phases from the oxidation product after TGA can be
indexed to SnO, (JCPDS no. 41-1445) and Fe,O3 (JCPDS no. 33-0664). Additionally, the atomic
ratio of Sn and Fe in the Sn—Fe alloy is determined to be 0.9:1 by EDS spectrum (Fig. S3), and thus
the atomic ratio of SnO, and Fe,0; in the oxidation product is 0.9:0.5. Therefore, the carbon content
in the Sn—Fe@C network can be calculated based on the following equation:

C(wt%)=100 — Sn-—Fe(wt%)

molecularweight of (0.9Snand Fe) final weight of Sn0O, and Fe, O,

=100— 100 X
molecular weight ot (0.95n0, and 0.5Fe,O5) mitial weight of Sn—Fe(@C network
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Fig. S5 XPS spectra of the nanoporous Sn—Fe@C network: (a) survey spectrum, and (b) Sn 3ps;,, and

Fe 2ps, spectra.



Fig. S6 TEM images of the Sn—Fe—C composite (a, b) and CA-derived carbon (c, d).
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Fig. S7 Nitrogen adsorption/desorption isotherms of the Sn—Fe—C composite.
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Fig. S8 The 1%, 2nd, 10t 20t 50, and 100% discharge and charge curves of the nanoporous Sn—

Fe@C network in the potential range of 0.01-2 V at a current density of 100 mA g!.



Fig. S9 HRTEM image of the nanoporous Sn—Fe@C network in a fully de-lithiated state (2.0 V vs.

Li*/Li) after 100 cycles.
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Fig. S10 Nyquist plots of the nanoporous Sn—-Fe@C network in comparison with Sn—Fe—C

composite and CA-derived carbon in fresh cells.



Fig. S11 Photographs of the cyano-bridged Sn—Ni hydrogel (a), CA/Sn—Ni hydrogel (b), and their

corresponding models (insets).
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Fig. S12 FTIR spectra of the K,Ni(CN), reagent (curve a), cyano-bridged Sn—Ni aerogel (curve b),

and CA/Sn—Ni aerogel (curve c).
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Fig. S13 TEM images of the nanoporous Sn—Ni@C network (a, b) and Sn—Ni—C composite (c, d).



