Fluorescence-quenching Based Signal Amplification on Immunochromatography Test Strip for Dual-Mode Sensing Two Biomarkers of Breast Cancer

Bo Zhang^{a,§}, Wenjuan Ma^{b,§}, Fuxin Li^{c,§}, Weichen Gao^a, Qian Zhao^a, Weipan Peng^a, Jiafang Piao^a, Xiaoli Wu^a, Hanjie Wang^a, Xiaoqun Gong^{a,*}, Jin Chang^{a,*}

^{*a*} School of Life Sciences, Tianjin University, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China

^b Breast Imaging Department, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China

^c Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China

§ B.Z. and W.M. have equal contribution to this paper.

Corresponding Author

*Xiaoqun Gong: Email: gongxiaoqun@tju.edu.cn.

*Jin Chang: Email: jinchang@tju.edu.cn. Tel: +86-22-27401821

	Limits of detection		Defermence	
	CEA (ng/mL)	C A153 (U/mL)	Referrence	
Chemiluminescent immuneassay	0.65	0.8	[1]	
Electrochemical immuneassay		0.3	[2]	
Immunochromatography test strip	2	_	[3]	
Immunochromatography test strip	0.35	_	[4]	
Immunochromatography test strip	0.06	0.09	This work	

Table S1. A comparison of the mFICTS and referenced immune assays for tumor markers.

Figure S1. (a) Bright-field and fluorescence-field images of solutions containing Cy5; SPMN; and Cy5 with SPMN. (b) Fluorescence images of solutions containing Cy5 and Cy5 with SPMN on the nitrocellulose membrane.

Figure S2. (a) Bright-field, fluorescence-field images and the fluorescent intensity change value of solutions without or with different concentrations of CEA antigen; (b) Bright-field, fluorescence-field images and the fluorescent intensity change value of solutions without or with different concentrations of CA153 antigen.

Figure S3. Size distribution of SPMN with different Fe₃O₄ MNPs content. (a) The Fe₃O₄ MNPs in one

SPMN with the concentration 3.6 mg/mL, (b) 6.0 mg/mL, (c) 8.4 mg/mL.

Figure S4. Colorimetric signal intensity under different concentrations of CA153 Ab-SPMN. The concentration of CA153 antigen were 0 U/mL, 5 U/mL and 200 U/mL respectively.

Figure S5. (a) The numerical simulation of single test line mFICTS and double test lines mFICTS for CEA. (b) The numerical simulation of single test line mFICTS and double test lines mFICTS for CA153.

Figure S6. The effect test time of mFICTS. (a), (b) Qualitative detection time for CEA and CA153. The concentration of CEA antigen was 100 ng/mL and CA153 antigen was 100 U/mL.

Table S2. Clinical data analysis of patient serum by using the mFICTS.									
	Sample	Error	Error		Sample	Error	Error Rate		
	size	Number	Rate		size	Number			
CA153				CEA					
Positive Sample	32	2	6.25%	Positive Sample	20	1	5%		
CA153				CEA					
Negative Sample	18	1	5.57%	Negative Sample	30	2	6.67%		
In All	50	3	6%	In All	50	3	6%		

Figure S7. Linear fitting method for our test results and ECLIA detection results. (a) Linear fitting for CA153. (b) Linear fitting for CEA.

Figure S8. (a) The test strip which was cut into 3 mm preserved in the silver paper. (b) The sealed package of mFICTS. (c) Three repeat tests for the fluorescence intensity F0 before reaction at 0, 3, 7, 10, 14 days.

Rererence

[1] Z. Fu, Z. Yang, J. Tang, H. Liu, F. Yan and H. Ju, ANAL CHEM, 2007, 79, 7376-7382.

[2] G. Wang, Y. Qing, J. Shan, F. Jin, R. Yuan and D. Wang, MICROCHIM ACTA, 2013, 180, 651-657.

[3] C. Wang, F. Hou and Y. Ma, BIOSENS BIOELECTRON, 2015, 68, 156-162.

[4] Z. Chen, R. Liang, X. Guo, J. Liang, Q. Deng, M. Li, T. An, T. Liu and Y. Wu, *BIOSENS BIOELECTRON*, 2017, 91, 60-65.

Calculate the number of oil-soluble Fe₃O₄ NPs in one PLGA-Modified water-soluble superparamagnetic nanosphere (SPMN).

$$Np = n_c V_l / V_2$$
 Eqn.1

Np is the number of Fe in one Fe₃O₄ NPs, n_c is the number of Fe atom in one Fe₃O₄ cell; V_1 is the volume of Fe₃O₄ NPs; V_2 is the volume of Fe₃O₄ cell.

$$C_1 = N_A C_{Fe} / (NpM_{Fe})$$
 Eqn.2

 C_1 is the particle concentration of Fe₃O₄ NPs; *NA* is the Avogadro Constant; C_{Fe} (µg/L) is the mass concentration of Fe atom which measured by the ICP-MS; M_{Fe} is the relative atomic mass of Fe atom.

$$C_2 = C_m / [4/3 \pi (d/2)^3 \rho]$$
 Eqn.3

 C_2 is the particle concentration of PMAO-Modified water-soluble super-paramagnetic nanosphere (SPMN); *Cm* is the mass concentration of SPMN, ρ is the density of the SPMN.

N=C1/C2 Eqn.4

N is the number of oil-soluble Fe₃O₄ NPs in one PMAO-Modified water-soluble super-paramagnetic nanosphere (SPMN)

The quenching efficiency of the SPMN to the Cy5 molecules

$$n_{Cv5} = c(Ab) * V(Ab) * R_{Cv5/Ab} / M(Ab)$$
 Eqn.5

 n_{Cy5} is the molar mass of Cy5; c(Ab) is the particle concentration of the capture antibody; V(Ab) is the reactive volume of capture antibody; $R_{Cy5/Ab}$ is the ratio of the Cy5 number with an antibdy; M(Ab) is the relative molecular mass of the antibody.

$$N_{quench} = n_{Cv5} * (F0-F) / (n_{SPMN} * F_0)$$
 Eqn.6

 N_{quench} is the quenching capacity about one SPMN relative to Cy5 molecules. n_{SPMN} is the reactive molar mass of SPMN; F0 is the fluorescence intensity before reaction; F is the fluorescence intensity after reaction.