Supporting information

Fast-switching electrochromic properties of mesoporous WO₃ films with

oxygen vacancy defects

Bon-Ryul Koo^a and Hyo-Jin Ahn^{*ab}

^aProgram of Materials Science & Engineering, Convergence Institute of Biomedical

Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul

01811, Korea

^bDepartment of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea

EXPERIMENTAL SECTION

Fabrication of mesoporous WO₃ films with oxygen vacancy defects

Mesoporous WO₃ films with oxygen vacancy defects were fabricated on commercial FTO glass (Pilkington, 8.0 Ω/\Box) using the camphene-assisted sol-gel method. The precursor solution for deposition of mesoporous WO₃ films with oxygen vacancy defects was prepared by dissolving tungsten (VI) chloride (WCl₆, Aldrich) in 2-propanol ((CH₃)₂CHOH, Aldrich). Camphene ((Hill Notation)C₁₀H₁₆, Aldrich) used as an organic additive was then added into the above-prepared solutions with stirring at room temperature. The relative weight ratios of the added camphene to the solvent were controlled to be 0, 5, 10, and 15 wt% for optimizing the EC properties of the mesoporous WO₃ films with oxygen vacancy defects. The resultant solutions were spin-coated on the FTO glasses and then annealed at 300 °C in air to form the mesoporous WO₃ films with oxygen vacancy defects. Therefore, four types of samples were fabricated by the camphene-assisted sol-gel method with the different weight ratios of the added camphene (0, 5, 10, and 15 wt%; thereafter denoted as bare WO₃, WO₃/C5, WO₃/C10, and WO₃/C15, respectively).

Characterization

The thermal behaviour of the samples was investigated by the thermogravimetric analysis (TGA, TGA–50, Shimadzu). The morphological properties was observed by a fieldemission scanning electron microscopy (FESEM, Hitachi S–4800). The chemical state and crystal structure were investigated through X-ray photoelectron spectroscopy (XPS, ESCALAB 250 equipped with an Al K_{α}X-ray source) and X-ray diffraction (XRD, Rigaku D/Max–2500 diffractometer using Cu K_{α} radiation), respectively. The electrical properties were confirmed by a Hall-effect measurement system (Ecopia, HMS-3000). The electrochemical and electrochromic properties were measured using a potentiostat/galvanostat (PGSTAT302N, FRA32M, Metrohm Autolab B.V., Netherlands) in a three-electrode electrochemical cell with 1 M LiClO₄ electrolyte, in which Pt wire and Ag wire were used as the counter and reference electrodes, respectively. The measurement of *in situ* optical properties was performed using ultraviolet-visible (UV–vis) spectroscopy (Perkim–Elmer, Lambda–35) in the wavelength range between 400 and 800 nm. The electrochemical impedances test was carried out on this electrochemical cell at the frequency range of 100 kHz to 0.1 Hz. The cycling stability was characterized by tracing the transmittance modulation at 633 nm during 1,000 cycles in the potential region of $\mathbb{Z}0.7\mathbb{Z}1.0$ V.

Fig. S1 Cross-view SEM images of (a) bareWO₃ and (b) $WO_3/C10$ before the annealing. The

insets in show top-view SEM images.

Fig. S2 XRD curves of bare WO₃, WO₃/C5, WO₃/C10, and WO₃/C15.

Fig. S3 Photographs of mesoporous WO₃ films with oxygen vacancy defects (WO₃/C10) with 2.5×2.0 cm in size in (a) the bleached and (b) coloured states.

Fig. S4 (a) Plots of $(ahv)^2$ versus photon energy and (b) electrical conductivity obtained from bare WO₃, WO₃/C5, WO₃/C10, and WO₃/C15.

Fig. S5 Cycling stability of transmittance modulation at 633 nm obtained from bare WO₃ and WO₃/C10, applied at 1.0 V for bleached state (solid line) and -0.7 V for coloured state (dotted line).

Material	Transmittance modulation (%, 633 nm)	Coloration speed (s)	Bleaching speed (s)	CE (cm ² /C)
Nest-like		26.0	5 5	
$WO_3 \cdot 0.33H_2O\ films^1$	-	26.0	5.5	126.3
Cylinder-like WO ₃ nanorod arrays ⁹	64.0	6.0	5.0	61.0
Macroporous WO ₃ films ¹⁰	-	5.1	8.7	50.1
Porous WO ₃ films ¹⁵	-	-	-	38.0
WO ₃ nanoparticle films ³⁴	-	-	-	42.0
Mesoporous WO ₃ films ²⁸	76.7	6.4	6.0	50.6
Mesoporous WO ₃ films ³⁹	75.0	10.0	10.0	50.0
Disordered porous				
semicrystalline WO ₃ films ⁴⁰	-	4.2	5.5	32.3
Vertically aligned				
hierarchical WO ₃ arrays ⁴¹	66.0	4.6	3.6	120.0
WO ₃ micro-unchin films ⁴²	-	-	-	42.3
Homogenous WO ₃ films ⁴³	-	-	-	28.0
Highly crystalline WO ₃ films ⁴⁴	-	3.0	9.0	40.0
WO ₃ crystalline nanoparticle films ⁴⁵	-	9.0	15.0	51.0
Mesoporous WO ₃				
films with oxygen vacancy defects	74.6	5.8	1.0	51.4

Table S1 Comparison of EC properties from previously reported WO₃-based materials.