Supporting Information

Uniform carbon dots@TiO₂ nanotube arrays with full spectrum wavelength light activation for efficient dye degradation and overall water splitting

Qun Wang,^{a,b} Jianying Huang,^b Hongtao Sun,^a Ke-Qin Zhang,^b and Yuekun Lai*^b

^aCollege of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China

^bNational Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, PR China Corresponding author email: yklai@suda.edu.cn

Figure S1. (a) DLS histogram of CDs. (b) A representative AFM topography image of CDs on mica (with a height profile plot along the line).

Figure S2. (a) C1s XPS spectra of graphite and CDs where the 284.8 eV peak is assigned to C-C is double bonds. (b) Raman spectra (λ_{ex} =633 nm) of graphite and CDs. Three prominent peaks at 1345, 1570 and 2685 cm⁻¹ corresponding to the graphite's D, G and 2D peaks, respectively, and D and G peaks of CDs are located at 1355 and 1600 cm⁻¹. (c) FTIR spectra of graphite and CDs. For graphite, three absorption peaks corresponding to the stretching of the hydroxyl group (3466 cm⁻¹), C=C skeletal vibrations bands (1633 cm⁻¹) and C-O stretching vibrations (1399 cm⁻¹), while for CDs, many strong absorption peaks corresponding to the stretching of the hydroxyl group (3443 cm⁻¹), C=O groups in the carbonyl and carboxyl moieties (1724 cm⁻¹), C=C skeletal vibrations bands (1420 cm⁻¹), C-O stretching vibrations in the epoxy groups (1244 cm⁻¹, 1073 cm⁻¹). (d) XRD patterns of graphite and CDs.

Figure S3. Top-view (a, c, e, g) and side-view (b, d, f, h) SEM images of CDs/TiO_2 NTAs with an electrochemical deposition time of 5, 10, 30 and 40 min, respectively.

Figure S4. FTIR spectra of TiO_2 NTAs (a), CDs/TiO₂ NTAs with an electrochemical deposition time of 5 (b), 10 (c), 20 (d), 30 (e) and 40 min (f), and CDs (g).

Figure S5. XRD spectra of TiO_2 NTAs (a), CDs/TiO₂ NTAs with an electrochemical deposition time of 5 (b), 10 (c), 20 (d), 30 (e) and 40 min (f).

Figure S6. Raman spectra of TiO_2 NTAs and CDs/ TiO_2 NTAs with different deposition time of 5, 10, 20, 30 and 40 min.

Figure S7. The time-resolved photoluminescence (TRPL) decay profiles for TiO_2 NTAs and CDs/TiO₂ NTAs with different deposition time of 5, 10, 20, 30 and 40 min.

Figure S8. Photocurrent densities versus time curves (a) and EIS Nyquist plots (b) of the pristine TiO_2 NTAs and CDs/TiO₂ NTAs with deposition time of 20 min in 0.1 M Na₂SO₄ solution under UV ($\lambda < 420$ nm) and visible light ($\lambda > 420$ nm) irradiation.

Table S1. Surface compositional analysis of TiO₂ NTAs and CDs/TiO₂ NTAs

Samples	C 1s (Atom%)	O 1s (Atom%)	Ti 2p (Atom%)
TiO ₂ NTAs	8.87	59.25	31.88
CDs CDs/TiO ₂ NTAs-5	10.52	58.87	30.61
CDs CDs/TiO ₂ NTAs-10	13.61	57.36	29.03
CDs CDs/TiO ₂ NTAs-20	18.22	53.91	27.87
CDs CDs/TiO ₂ NTAs-30	22.36	50.54	27.01
CDs CDs/TiO ₂ NTAs-40	25.67	48.26	26.07

Table S2. Kinetic parameters of emission decay analysis of TiO_2 NTAs and CDs/TiO₂ NTAs deduced from double exponential fits

Sample	$A_{1}(\%)$	τ_1 (ns)	$A_{2}(\%)$	T_2 (ns)	$\tau_{average} (ns)$
TiO ₂ NTAs	12.16	48.87	87.84	33.72	36.25
CDs/TiO ₂ NTAs-5	9.46	20.19	90.54	18.23	18.52
CDs/TiO ₂ NTAs-10	7.24	29.55	92.76	15.68	17.46
CDs/TiO ₂ NTAs-20	5.12	40.27	94.88	11.56	16.10
CDs/TiO ₂ NTAs-30	11.36	47.32	88.64	19.53	26.11
CDs/TiO ₂ NTAs-40	32.67	44.61	67.33	26.83	34.77

Figure S9. The kinetic rates of photocatalytic degradation curves for RhB using TiO₂ NTAs and CDs/TiO₂ NTAs with different deposition time of 5, 10, 20, 30 and 40 min under the simulated solar light illumination (100 mW·cm⁻²).

Figure S10. (a) Photocatalytic degradation curves for RhB and (b) corresponding kinetic rates by using TiO₂ NTAs and CDs/TiO₂ NTAs with a deposition time of 20 min as catalysts under different irradiation conditions. The UV and visible light denote $\lambda < 420$ nm and $\lambda > 420$ nm, whose power densities are measured to be 2.7 and 100 mW cm⁻², respectively.

Figure S11. (a) Photocatalytic phenol degradation by self-degradation, using TiO₂ NTAs and CDs/TiO₂ NTAs with deposition time of 20 min, respectively. (b) Consecutive photocatalytic degradation of phenol using one CDs/TiO₂ NTAs with deposition time of 20 min sample 5 continuous cycles. (c) TOC removal efficiency during photocatalytic degradation using TiO₂ NTAs and CDs/TiO₂ NTAs with deposition time of 20 min, respectively. (d) TOC removal efficiencies of photocatalytic phenol degradation by using one sample for CDs/TiO₂ NTAs with a deposition time of 20 min for continuous 5 consecutive cycles under the same condition. C_0 , C_t is the initial concentration and concentration after a certain reaction time of phenol, respectively.