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S1. Electrostatic model (Model 2)

As usual for electrostatic problems, this model is based on the minimization of the total

Gibbs free energy of the system1. From the electric field distribution in the transistor

geometry, the alignment of the molecular orbitals is determined and the related charge

transport properties are derived in a noninteracting single-particle picture, following the

Landauer-Büttiker scattering theory2,3.

Measured from the charge neutrality point, the charging shifts the electrochemical po-

tential of the graphene by µD, leading to the charging energy per unit area in the drain

of

Ed =

∫ |µd|
0

ρ(E)EdE =
2

3

|µD|3

πh̄2v2F
. (1)

Here, the density of states per unit area ρ(E) = 2|E|/(πh̄2v2F) of graphene was used4 and

vF is its Fermi velocity. Now, this energy can be expressed in terms of the surface charge

density σd of graphene as

Ed =
2

3
h̄vF
√
π

√
|σd|
e

3

, (2)

by using that

σd = −sgn(µd)e

∫ |µD|
0

ρ(E)dE = −sgn(µd)e
|µd|2

πh̄2v2F
(3)

with the sign function sgn(x).

Denoting the surface charge densities of the source and the gate with σs and σg, respec-

tively, we can express the (perpendicular component of the) electric field between the tip
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and the graphene layer as

F0 =
1

2ε0
(σg + σd − σs) (4)

and the field between the graphene layer and the gate as

F1 =
1

2ε1
(σg − σd − σs) , (5)

where ε0 is the vacuum permittivity and ε1 is the permittivity of the SiO2 layer isolating the

graphene from the gate, see Fig. 4(c) of the main text. (Electric field components parallel

to the planes vanish due to the symmetry of the assumed system with infinitely extended

surfaces.) The total electrostatic energy due to these fields is

EField =
ds
8ε0

(σg + σd − σs)2 +
dg
8ε1

(σg − σd − σs)2 (6)

with ds being the distance between the tip and the graphene layer and dg that between the

graphene layer and the gate.

The surface charge densities can be influenced by the power supplies, which in turn have

to perform the infinitesimal work

dW =

(
−Φs

e
+ Vb

)
dσs +

(
−Φd

e
− sgn(σd)

h̄vF
e

√
π

e

√
|σd|
)

dσd +

(
−Φg

e
+ Vg

)
dσg (7)

due to any infinitesimal change in σs, σd or σg. The work functions of each layer are

denoted by Φs, Φd and Φg, respectively. Since the graphene is grounded, Vd=0 is left out of

consideration here.

Now the total Gibbs free energy of the tip/graphene/gate or source/drain/gate system

at temperature T = 0 K is given as the sum of the charging energy of the graphene, the

electrostatic field energies, and the work performed by the electrodes. This yields

G(σs, σd, σg) = Ed(σd) + EField(σs, σd, σg)−W (σs, σd, σg), (8)

which depends parametrically on several parameters, particularly Vb and Vg.

To calculate the charge transport properties, we need to consider that the field F0(σs, σd, σg)

shifts the molecular energy levels. We include this effect by computing the electrostatic po-

tential at the position of the molecule for given Vb and Vg. The electrostatic problem is

solved by minimizing G(σs, σd, σg) with respect to all three surface charge densities un-

der the constraint that the charge neutrality condition σs + σd + σg = 0 is fulfilled. The
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∂I(Vb, Vg)/∂Vb map is calculated using the Landauer formula3

I(Vb, Vg) =
e

πh̄

∫ ∞
−∞
T (E, Vb, Vg)(f(E − eVb)− f(E)) dE. (9)

For simplicity, we restrict ourselves to a single electronic level and employ the transmission

probability

T (E, Vb, Vg) =
ΓsΓd

(E − ε(Vb, Vg))2 + (Γs/2 + Γd/2)2
. (10)

In the expressions, f(E) = {exp(E/kBT ) + 1}−1 is the Fermi function, and Γs and Γd

are the linewidth broadenings for source and drain. The energy of the molecular state is

ε(Vb, Vg) = εm + Φd + µd(Vb, Vg) − e dmF0(Vb, Vg), where εm is its energy in equilibrium at

Vb = Vg = 0 relative to Φd and dm is the molecule-graphene distance, as shown in Fig.4 (c)

of the main text.

Figure 4 (a) of the main text shows the slope dVg/dVb of several dI/dVb peaks extracted

from measurements around Vg = 0 and the prediction of both models. For model 2, the

results were obtained by varying εm and numerically determining the peak position at Vg = 0

and the corresponding slope dVg/dVb. The models show differences at dVg/dVb < 0, and

model 2 describes slightly better the region in the lower right quadrant with peak positions

at positive voltages and dVg/dVb < 0. Further measurements are needed to compare to the

predictions of both models for the lower left quadrant at negative voltages and dVg/dVb < 0.

S2. Calculations based on density functional theory

To perform the first-principles calculations based on density functional theory (DFT), the

quantum chemistry software package TURBOMOLE5 was used with the PBE exchange-

correlation functional6 and the def2-TZVP basis set7–9. Calculations were done for a single

gas-phase CoPc molecule. It was first optimized in the neutral charge state to determine

the ground state geometry. Subsequently, we calculated the Kohn-Sham (KS) orbitals and

their energies. To correct for the known underestimation of the gap between the HOMO and

the LUMO within DFT10, we used the Delta-SCF scheme11. In the procedure we determine

the electron affinity, EA = E(N) − E(N − 1) ≈ 2.8 eV, and the ionization potential,

IP = E(N − 1) − E(N) ≈ 6.3 eV, from differences of total energies. In the expressions,

E(N) refers to the total energy of the charge neutral ground state of the molecule with N

electrons, while E(N + 1) and E(N −1) are the total energies when one electron is added or
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FIG. S1. Evolution of uncorrected KS molecular orbital energies under an electric field, applied

perpendicular to the plane of the CoPc molecule. Orbitals around the LUMO energy are shown.

removed, respectively. In all total energy calculations the optimized ground state geometry

of the neutral CoPc is used. This assumes vertical excitations without a relaxation of the

nuclei, when quasiparticle energies are measured. By shifting all of the unoccupied orbitals

by the same amount of ∆unocc ≈ 1.7 eV and the occupied ones by ∆occ ≈ −1.4 eV, we obtain

the energy values displayed below the KS orbital wave functions in Fig. 2 (e) of the main

text.

We wanted to analyze, whether a simple Stark shift of the molecular orbitals can explain

the dependence of energy levels on the gate voltage, shown in Fig. 3 of the main text. For this

reason, we studied the behavior of the KS molecular orbital energies when a homogeneous

electric field is applied perpendicular to the plane of the molecule. The TURBOMOLE

calculations, displayed in Fig. S1, exhibit a weak quadratic Stark effect for all orbitals.

For a field strength of 10 V/nm, at least one order of magnitude beyond what can be

realized in the STM junction, molecular orbital energies are changed by less than 0.05 eV

as compared to the situation with a vanishing electric field. The changes in peak positions

of several 0.1 V, visible in Fig. 3, must hence be due to other electrostatic effects, explained

in the main text and by the models in the previous section.

Note that CoPc is a spin-polarized molecule. Since the STM used here cannot distinguish

between different spin directions, we have not discussed separately spin-up and spin-down

states in Fig. S1 or Fig. 2 of the main text, but simply group them according to their energies.

Using α and β to symbolize spin up and down, respectively, the states shown in Fig. S1 can
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be categorized in detail as follows: HOMO-2 is a non-degenerate β state, HOMO-1 is two-

fold degenerate of spin β, HOMO is spin-degenerate (i.e. EHOMO,α ≈ EHOMO,β), LUMO is

non-degenerate of spin β, and LUMO+1 and LUMO+2 are degenerate of spin α and β,

respectively.
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