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S1. Analysis based on coupled mode equations 

There is a waveguide which supports two waveguide modes propagating along the z axis: mode a 

and mode b. The propagation constant and attenuation coefficient of mode a (b) are a and a (b 

and b), respectively. The amplitudes of modes a and b are A(z) and B(z), respectively. If the 

waveguide is uniform in the z-axis, A(z) and B(z) are just constant. Co-directional coupling 

between the two modes occurs when a periodic perturbation or grating of period  exists in the 

waveguide. If the perturbation is weak, A(z) and B(z) are determined by the coupled mode 

equations: 
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where  is a coupling coefficient and  is the phase mismatch factor given by 2 /b a     . It 

is assumed that b > a and b >> a. In addition, it is assumed that A(0) = 1 and B(0) = 0.  

represents b – a. 

When the phase-matching condition is satisfied (i.e.,  = 0) and  > /2, the coupled mode 

equations are solved such that 
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where 2 2( / 2)    . The power of mode a, Pa(z) and the power of mode b, Pb(z) are given 

by 
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where b a    . 

When  = 0 and  <  /2, the coupled mode equations are solved such that  
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where 2 2/ 2 ( / 2)        and 2 2/ 2 ( / 2)       . Pa(z) and Pb(z) are given by 
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When a = 0.0025 m–1 and b = 0.5 m–1, Pa(z) and Pb(z) were calculated for a few 

values of  and they are shown in Figure S1. If  is sufficiently large, Pa becomes equal to zero at 

some distance, and Pb first increases and then decreases within that distance. However, if  is much 

smaller than , Pa slowly decreases from 1 as z increases, and Pb is almost equal to zero. This can 

be confirmed from Equations S9 and S10. If  << /2, 0   and    . Then, 
2

( ) a z

aP z e


 , 

and ( ) 0bP z  . Therefore, for the power of mode a to decrease to zero at some distance,  must be 

larger than /2. Since  is determined by a modal overlap between modes a and b in the perturbed 

region, the overlap must be intense for the efficient co-directional coupling of mode a to mode b 

if b is very large. This is satisfied by the hybrid plasmonic waveguide, the HPWM and the GPWM 

of which correspond to mode a and mode b, respectively.  
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Figure S1. (a) Change of the power of mode a along the grating. (b) Change of the 

power of mode b along the grating. 

It can be estimated how strongly mode a should be confined in the perturbed region when 

mode b is the graphene plasmon polariton (GPP) of the graphene embedded in a homogeneous 

medium of refractive index n. The magnetic field of the GPP, Hb(x) is given by 
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where k0 = 2/ and 0 0 0/   . In addition, b = b + ib, and 2 2 2

0b b k n    whose real 

part is chosen to be positive. P is a sort of mode power calculated by using Equation (S27), which 

is usually 1 W/m. The perturbed region is between x = 0 and x = –dg, and it is assumed that the 

magnetic field of mode a is almost constant since the region is actually much narrower than the 

effective mode width of mode a. If the fraction of the power of mode a in the perturbed region is 

a, the magnetic field of mode a in the region, Ha is approximately given by 
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where a = a + ia. Then, the coupling coefficient (z) between modes a and b is given by  
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where n2(z) represents the change of n2 along the grating. For the grating formed by air grooves, 

n2(z) alternates between 0 and n2 – 1. The second approximation is valid if dg >> 1/b, and the 

last approximation is valid since b is almost the same as b for the GPP.  in Equations (S1) to 

(S10) is obtained from the Fourier series expansion of (z) and hence smaller than max = 

2 2

g( 1) / (2 ) /a an n d  . When n = 2.22 (the refractive index of ZnS at 8 m), |a|  a = 3.26 

 k0 (the propagation constant of the HPWM in section 1 at 8 m), and dg = 70 nm, a should be 

larger than 4.3 % for max > 0.5 m–1. The actual value of a of the HPWM in section 1 is 4.8 %. 

(For reference, in the case of the photonic waveguide, which is the hybrid plasmonic waveguide 

with the metal replaced by air, the fraction of the power of its fundamental TM mode in the 

perturbed region is just 0.07 %. This shows that a of the HPWM is exceptionally large.) Therefore, 

we can conclude that the HPWM is confined in the perturbed region as strongly as required for a 

sufficiently large value of . Last, it is necessary to note that the validity of the analysis based on 

the coupled mode equations is limited since the perturbation given by the grating is not weak. 

Therefore, the modulator should be analyzed by using a more rigorous method. 

 

 

S2. Waveguide analysis based on the transfer matrix method 
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A multilayer waveguide is schematically shown in Figure S2. It is uniform in the y-axis and has 

L+1 boundaries. The boundary at x = xl, l = 0, 1, … , L, has a surface conductivity l such that 

there is a surface current density given by lEt(xl), where Et represents the electric field component 

normal to the x-axis. A transverse magnetic (TM) mode has a magnetic field H(x, z, t) = 

ˆ ( )exp( )H x i z i t y , where  =  + i and  and  are the propagation constant and attenuation 

coefficient of the mode. From the Helmholtz equation, it is found that 
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where k0 = 2/ and 2 2

0( )l lk n   . The imaginary parts of 0 and L+1 have to be positive. 

Using the boundary conditions that  
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where lx  ( lx
) is infinitesimally larger (smaller) than xl and 0 0 0/   , the transfer matrix Ml 

is determined. The matrix equation for (l,  l) is 
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where dl = xl – xl–1. Finally, the characteristic equation for  is 
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 is determined by numerically finding the roots of Equation (S22). 

 

Figure S2. Structure of a multilayer waveguide. The boundary at x = xl, l = 0, 1, … , L, 

has a surface conductivity l. 

 

 

S3. Mode matching method 

The mode matching method used in this work is based on Ref S1. There is the interface between 

two waveguides (Figure S3). A waveguide mode of order m of the left waveguide has the electric 

field  ( , )exp( )L L

m mx y i zE  and the magnetic field ( , )exp( )L L

m mx y i zH  (
L

m is the complex 

propagation constant of the mode of order m). Similarly, a waveguide mode of order n of the right 

waveguide has the electric field  ( , )exp( )R R

n nx y i zE  and the magnetic field ( , )exp( )R R

n nx y i zH  

(
R

n is the complex propagation constant of the mode of order n). When the left waveguide mode 

of order m is incident on the interface, it is partially coupled to the left-going modes of the left 

waveguide and partially coupled to the right-going modes of the right waveguide. The mode 

matching at the interface makes the reflection and transmission of the incident mode expressed by 

 , , , , , ,L L R

m t n m n t n m n tn n
r t  E E E  (S23) 
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where the subscript t means the transversal component of the field. By applying the unconjugated 

orthogonality relation, Equations (S23) and (S24) are transformed into 
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From Equations (S25) and (S26), the transmission matrix TLR with the elements {tn,m} and the 

reflection matrix RLR with the elements {rn,m} are determined such that  

 
12( ) ,T

LR LR RL

 T O O  (S28) 

 1
2
( ) ,T

LR RL LR LR R O O T  (S29) 

where the (m, n) element of OLR is 
, ,,L R

m t n tE H  and the (m, n) element of ORL is 
, ,,R L

m t n tE H . If the 

waveguides are multilayer waveguides which are uniform in the y-direction and transverse 

magnetic (TM) polarization is considered,  

 , , 2

0

1
, ( ) ( ) ,

2 ( )

L
L R L Rm
m t n t m n

L

H x H x dx
n x









 E H  (S30) 

 , , 2

0

1
, ( ) ( ) ,

2 ( )

R
R L R Lm
m t n t m n

R

H x H x dx
n x









 E H  (S31) 

where nL(x) and nR(x) are the refractive index distributions in the left and right waveguides, 

respectively. When TRL represents the transmission matrix from the right waveguide to the left 

waveguide and RRL represents the reflection in the right waveguide, they are given by 
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Figure S3. Interface between two waveguides. The incident mode of the left waveguide 

is reflected to the left waveguide modes or transmitted to the right waveguide modes. 

There is a structure consisting of concatenated N waveguides (Figure S4). The h-th 

waveguide of this structure is located between zh–1 and zh, and its length lh is zh – zh–1. The complex 

propagation constant of the m-th order mode of the waveguide is 
h

m . Fh and Bh are the column 

vectors of the amplitudes of the forward-going and backward-going modes at hz  ( hz  is 

infinitesimally smaller than zh). Then, the following matrix equation can be found: 
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diag( )
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h
m hi l

e


. When the relation of [Fp, B1] to 

[F1, Bp] is given by 
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T1, p+1, R1, p+1, T p+1,1, and R p+1,1 for the relation of [Fp+1, B1] to [F1, Bp+1] are given by 
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where I is the identity matrix. Based on Equations (S39) – (S43), the relation of [FN, B1] to [F1, 

BN] can be found, and the transmission through the structure and the reflection from the structure 

can be determined. This is the mode matching method used in this work. 

 

Figure S4. Schematic diagram of a structure consisting of concatenated N waveguides. 

The mode matching method yields correct results when not only the guided modes of 

constituent waveguides but also their radiation modes are considered. The radiation modes can be 

so called discretized by bounding the waveguides with perfect electric conductors. However, for 

convenience, only the guided modes of the hybrid plasmonic waveguide are considered in this 

work. In addition to the HPWM and the GPWM, the hybrid plasmonic waveguide supports another 

guided mode which has the electric field distribution shown in Figure S5. With the HPWM 

launched before the grating region, the mode matching method considering the three guided modes 

was used to calculate the transmission from the HPWM before the grating region to that after the 

grating region. The calculated transmission spectrum is shown in Figure 3a.  

 



 11 

 

Figure S5. Electric field distributions of another guided mode in sections 1 and 2. 

 

 

S4. Information about the analysis based on the FDTD method 

When the FDTD method was used, the meshes used in the slot region had dimensions of 1 nm by 

1 nm. The meshes used outside the slot region were gradually enlarged such that the largest meshes 

had dimensions of 10 nm and 8 nm in the horizontal and vertical directions, respectively. For the 

analysis based on the FDTD method, the fundamental TM mode was launched as a source in the 

input photonic waveguide, and the mode expansion monitor of FDTD Solutions was employed in 

the output photonic waveguide to extract the output fundamental TM mode power.  

Since the hybrid plasmonic waveguide contains metal and graphene, the powers of the 

HPWM and the GPWM at a position in the hybrid plasmonic waveguide cannot be correctly 

calculated by using the mode expansion monitor. Hence, the powers were calculated by using the 

following steps. First, the electromagnetic fields E(x) and H(x) at the position are monitored. The 

transversal components of E(x) and H(x) are expanded into the sums of the transversal components 

of Em(x) and Hm(x) of the modes of the hybrid plasmonic waveguide such that 

 , , and .t m m t t m m tC C  E E H H  (S44) 

Actually, ,
ˆ

m t m mH H H y , and 
2

, , 0
ˆ ˆ / ( )m t m x m mE n H  E x x . Second, the unconjugated 

orthogonality in Equation (S27) is applied to Equation (S44) such that the mode expansion 

coefficient Cm is determined by  
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where Ex is the x component of E. Last, the power of the mode of order m, Pm at the position is 

given by 
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where the asterisk * means complex conjugation. Pm is normalized to the input fundamental TM 

mode power. 

 

 

S5. Relations of the coupling wavelength to 1 and 2 

For the initial values of Λ1 and Λ2, determined by the  phase difference condition, the 

transmission spectrum calculated by using the FDTD method is centered at a wavelength of 7.823 

m. If Λ1 and Λ2 are appropriately increased, the transmission spectrum can be made centered at 

a wavelength of 8 m. For this purpose, using the mode matching method, we calculated the 

transmission spectrum with Λ1 changed between 48 nm and 58 nm but with Λ2 set at 87 nm. Then, 

the center wavelength c of the major rejection band in the transmission spectrum was determined. 

The relation of the center wavelength to Λ1 is shown in Figure S6a together with the straight line 

fitted to the relation. The slope of the straight line, c/1 is 40 nm/nm. Next, we calculated the 

transmission spectrum with Λ2 changed between 82 nm and 92 nm but with Λ1 set at 55 nm. The 

relation of c to Λ2 in this case is shown in Figure S6b, and the slope of the straight line fitted to 

the relation, c/2  is 25 nm/nm. We confirmed the values of c/1 and c/2 determined 

by using the mode matching method with those determined by using the FDTD method. For this 

purpose, using the FDTD method we calculated the transmission spectrum for Λ1 between 48 nm 

and 58 nm and Λ2 = 87 nm or for Λ2 between 82 nm and 92 nm and Λ1 = 55 nm. To reduce 

calculation time, the number of periods was set at 10. Figure S6c and Figure S6d show the 

calculated transmission spectra. The relations of c to Λ1 and Λ2 determined by the FDTD method 

are shown in Figure S6a and Figure S6b, respectively, along with the straight lines fitted to the 

relations. The slopes of the straight lines are the same as the values of c/1 and c/2 

determined by the mode matching method. If both Λ1 and Λ2 are increased by 3 nm, c is expected 
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to increase from 7.823 m to 8.018 m. Therefore, Λ1 and Λ2 are adjusted to be 58 nm and 90 nm, 

respectively. 

 

Figure S6. Transmission characteristics depending on Λ1 and Λ2. (a) Relations of the 

coupling wavelength c to Λ1 for Λ2 set at 87 nm. (b) Relations of the coupling 

wavelength c to Λ2 for Λ1 set at 55 nm. In panels a and b, the symbols show the relations 

calculated by using the mode matching method (MMM) and the FDTD method (FDTD). 

The straight lines are fitted to the relations. (c) Transmission spectra for Λ1 between 48 

nm and 58 nm and Λ2 = 87 nm. (d) Transmission spectra for Λ2 between 82 nm and 92 

nm and Λ1 = 55 nm. The transmission spectra were calculated by using the FDTD 

method for the modulator with the grating with 10 periods. 

 

 

S6. Change of the transmission spectrum depending on the number of periods 

Using the FDTD method, we calculated the transmission spectrum with the number of periods 

changed from 2 to 40. The calculated transmission spectra are shown in Figure S7a. The center 

wavelength of the major rejection band almost does not change, and its depth increases with the 

number of periods. The relation of the transmission at the center wavelength to the number of 

periods is shown in Figure S7b. 
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Figure S7. Transmission characteristics depending on the number of periods. (a) 

Transmission spectra for the number of periods between 2 and 40. (b) Transmission at 

the coupling wavelength vs. the number of periods. 

 

 

S7. Power changes of the HPWM and the GPWM in the grating region 

The curve calculated by Equation (S5) was fitted to the relation of the normalized power of the 

HPWM to z, which was calculated by using the FDTD method. In this fitting process, we assumed 

that b is much larger than a such that 
b     . The fitting process resulted in     = 

0.5627 m–1 and   = 0.4792 m–1. The fitted curve is shown in Figure S8a. Then, the curve 

calculated by Equation (S6) was fitted to the relation of the normalized power of the GPWM to z, 

which was calculated by using the FDTD method. The fitting process resulted in   = 0.4104 m–

1 and   = 0.5549 m–1. The values of   are close to the attenuation coefficients of the GPWM in 
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sections 1 and 2, which are  0.6868 m–1 and 0.4807 m–1. The fitted curve is shown in Figure 

S8b. For the fitted curves in Figure 3e, the average of the two values of   (i.e., 0.4865 m–1) and 

the average of the two values of   (i.e., 0.5157 m–1) were used. 

 

Figure S8. (a) Relation of the HPWM power to z. The curve calculated by Equation (S5) 

is fitted to the relation calculated by using the FDTD method. (b) Relation of the GPWM 

power to z. The curve calculated by Equation (S6) is fitted to the relation calculated by 

using the FDTD method. 

 

 

S8. Transmission spectra calculated for dg between 10 nm and 130 nm 

We calculated the propagation constant G2 of the GPWM in section 2 as a function of dg at a 

wavelength of 8 m. As shown in Figure S9a, G2 decreases as dg increases up to 60 nm and does 

not change so much for dg larger than 70 nm. Figure S9b shows the transmission spectra calculated 

for dg between 10 nm and 130 nm. The relations of the coupling wavelength c and the transmission 

at c to dg were obtained from the spectra and used for Figure 4a. 
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Figure S9. Transmission characteristics depending on the grating depth dg. (a) 

Propagation constant G2 of the GPWM in section 2 as a function of dg at a wavelength 

of 8 m. (b) Transmission spectra calculated by using the FDTD method for dg between 

10 and 130 nm. 

 

 

S9. Transmission coefficient from the HPWM in section 1 to the GPWM in section 2  

The transmission coefficient tGH from the HPWM in section 1 to the GPWM in section 2 can be 

calculated by using Equation (S28). In the calculation, sections 1 and 2 correspond to the left and 

right waveguides in Figure S3, respectively. The calculated transmission coefficient is shown with 

respect to dg in Figure S10. The relation between tGH and the coupling coefficient  in 

Supplementary Information S1 is roughly given by 
1

GH2sin /t   , where  is the grating 

period. When tGH is around 0.035,  is approximately 0.47 m–1. 
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Figure S10. Transmission coefficient from the HPWM in section 1 to the GPWM in 

section 2 vs. the grating depth dg.  

 

 

S10. Transmission spectra calculated for different graphene carrier mobilities 

Figure S11a shows the real and imaginary parts of the graphene conductivity as functions of the 

graphene mobility  at a wavelength of 8 m. Figure S11b shows the propagation constants and 

losses of the GPWM in sections 1 and 2 as functions of  at a wavelength of 8 m. Finally, Figure 

S11c shows the transmission spectra calculated for  between 1,250 cm2/V/s and 10,000 cm2/V/s. 

In the calculations related to all the panels, the chemical potential was set to 0.6 eV.  
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Figure S11. Transmission characteristics depending on the graphene carrier mobility . 

(a) Real and imaginary parts of the graphene conductivity as functions of the graphene 

mobility . (b) Propagation constants and losses of the GPWM in section 1 and 2 as 

functions of . The calculations for panels a and b were done at a wavelength of 8 m. 

(c) Transmission spectra for  between 1,250 and 10,000 cm2/V/s. 
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S11. Transmission spectra calculated for c between 0.45 eV and 0.75 eV 

Figure S12 shows the transmission spectra calculated for c between 0.45 eV and 0.75 eV. In the 

calculation, the graphene carrier mobility  was set to 10,000 cm2/V/s. 

 

Figure S12. Transmission spectra for c between 0.45 eV and 0.75 eV. 

 

 

Movie S1. Co-directional coupling between the HPWM and the GPWM  

The movie was taken at a wavelength of 8.014 μm for the grating with 15 periods. It can be 

observed that the GPWM is generated in the right part of the grating and propagating in the hybrid 

plasmonic waveguide after the grating. 

 

 

Movie S2. Contra-directional coupling between the HPWM and the GPWM  

The movie was taken at a wavelength of 8.62 μm for the grating with 15 periods. It can be observed 

that the GPWM is generated in the left part of the grating but not propagating rightwards after the 

grating. There is the weak GPWM propagating leftwards before the grating.  
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