Supporting Information

Nanoconfinement effects of chemically reduced graphene oxide nanoribbons on poly(vinyl chloride)

Jun Ho Choe, Jisoo Jeon, Min Eui Lee, Jeong Jae Wie, Hyoung-Joon Jin,* and Young Soo Yun*

Figure S1. FE-SEM images of MWCNTs at various magnifications.

MWCNTs inherently contain numerous intrinsic defects in their graphene layer, such as heptagon–pentagon pairs, which can cause the tube to bend permanently.¹ These bent MWCNTs exhibit different characteristics than those of straight CNTs, and the bending ratio is an important parameter describing their specific characteristics. A quantitative factor for characterizing the various shapes of MWCNTs was therefore reported.^{1–3} The bending ratio (D_b) is defined as the ratio of the mean-square end-to-end distance ($\langle R^2 \rangle$) to the square contour length (L^2)):

$$D_b \equiv \frac{\langle R^2 \rangle}{L^2} \tag{S1}$$

The relationship between the mesoscopic shape and the overall size is given by

$$\langle R^2 \rangle = 2l_{sp}L + 2l_{sp}^2 (e^{-L/l_{sp}} - 1),$$
 (S2)

where l_{sp} is the static bending persistence length and *L* is the contour length along the tube axis. For $L \gg l_{sp}$, or the "rigid random-coil limit," $\langle R^2 \rangle = 2l_{sp}L$. If $L < l_{sp}$, or the "rigid rod limit," then $\langle R^2 \rangle = L^2$. A large or small l_{sp} value indicates a large or small number of defects in the MWCNTs, respectively.

In our study, we used MWCNTs with high persistence length ($l_{sp} \sim 520$ nm) to prepare chemically unzipped MWCNTs, with high contour length and aspect ratio, as shown in Fig. S1.

[1] Lee HS, Yun CH, Kim HM, Lee CJ. Persistence length of multiwalled carbon nanotubes with static bending. J. Phys. Chem. C 2007; 111(51): 18882-18887.

[2] Lee HS, Yun CH, Kim SK, Choi JH, Lee CJ, Jin H-J, Lee H, Park SJ, Park M. Percolation of two-dimensional multiwalled carbon nanotube networks. Appl. Phys. Lett. 2009; 95(13): 134104.

[3] Yun YS, Kown HI, Bak H, Lee EJ, Yoon J-S, Jin H-J. Morphological Effects of Alkylated Multiwalled Carbon Nanotubes on Poly(L-lactic acid)-Based Composites. Macromol. Res. 2010; 18(9): 828-833.

Figure S2. Deconvolved Raman spectra for (a) GONRs and (b) C-rGONRs.

Figure S3. (a) Time vs. transmittance variation plot of GONRs and C-rGONRs dispersion in DMF obtained by Turbiscan. (b) Photographs of PVC films containing 0.1 wt% C-rGONR.

Figure S4. (a) Contact angle data of water on (a) PVC, (b) C-rGONRs and (c) GONRs films, and of glycerol on (d) PVC, (e) C-rGONRs and (f) GONRs films.

	PVC	C-rGONR	GONR
Dispersion, Y ^d [mJ/m ²]	29.3	28.9	27.8
Polarity, γ ^p [mJ/m ²]	4.6	3.8	21.1
Surface energy, $\gamma = \gamma d + \gamma p$ $[mJ/m^2]$	33.9	32.7	48.9

Table S1. Surface properties of PVC, C-rGONRs and GONRs.

Figure S5. (a) IR spectra of C-rGONRs, PVC, and PVC/C-rGONRs, and XPS Cl 2*p* spectra of (b) PVC matrix and (c) PVC/C-rGONRs nanocomposite.