Supporting Information

Confinement of the Polysulfides within the Bi-functional Metal-Organic Framework for High Performance Lithium-Sulfur battery

Xu-Jia Hong,^{a,b,c} Tian-Xiong Tan,^{a,b,c} Yu-Kai Guo,^a Xue-Ying Tang,^a Jian-Yi Wang,^a Qin Wei^a and Yue-Peng Cai^{*a,b,c}

^aSchool of Chemistry and Environment, South China Normal University, Guangzhou,510006, P. R. China.

^bGuangzhou Key Laboratory of Materials for Energy Conversion and Storage, Guangzhou, 510006, P. R. China.

^cGuangdong Provincial Engineering Technology Research Center for Materials for Energy Conversion and Storage, Guangzhou, 510006, P. R. China.

*Corresponding authors: E-mail: ypcai8@yahoo.com(Y.-P. Cai), Fax: 086-020-39310187.

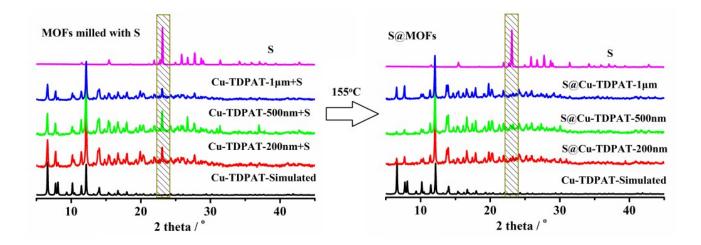


Figure **S1**. PXRD patterns of sulfur and Cu-TDPAT after ground (left) and after heated at 155°C (right).

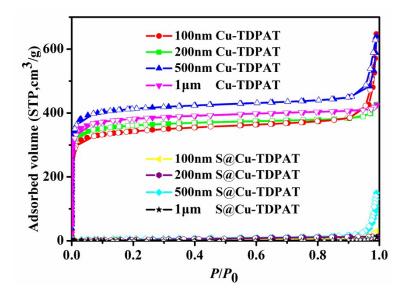


Figure **S2**. Adsorption isotherms of different size of nano Cu-TDPAT and S@Cu-TDPAT.

Table S1 . Pore characterization results given by nitrogen adsorption measurement at 77K and the
calculated sulfur contents in the composites.

	S _{BET} (m ² /g) ^a	pore size (nm)	V(cm³/g)♭	S/MOF(g/g) ^c	S content (%) ^d
100nm	1473	1.7645	0.55	1.001	50.0
200nm	1532	1.8662	0.62	1.128	53.0
500nm	1618	1.7766	0.63	1.146	53.4
1µm	1564	1.6832	0.61	1.110	52.6

^aFitting range : 0.005< p/p_0 <0.05

^bCalculated based on the adsorption volumes at p/p_0 =0.05

^cS/MOF=(density of molten sulfur, 1.82g/cm³) × (pore volume at p/p_0 =0.05)

^dThe largest amount of sulfur loading in the cage.

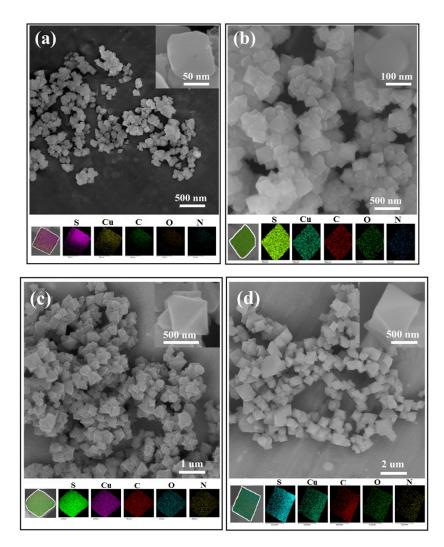


Figure **S3**. SEM and EDS mapping of S@Cu-TDPAT with different size (a) ~100nm; (b) ~200nm; (c) ~500nm; (d) ~1 μ m S@Cu-TDPAT.

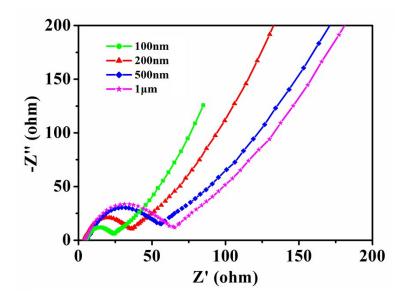


Figure **S4**. EIS plots of the S@Cu-TDPAT composite cathodes with different size before cycles.

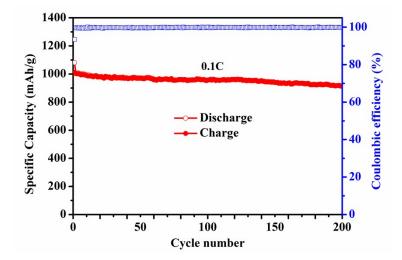


Figure **S5**. Cycling stability of S@Cu-TDPAT-100nm cathode at 0.1 C for 200 cycles.

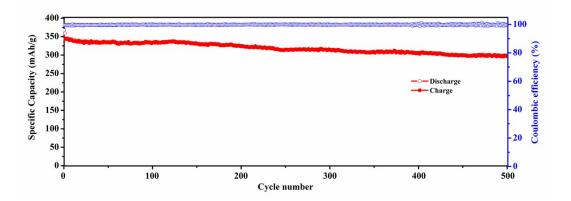


Figure **S6**. Cycling stability of S@Cu-TDPAT-100nm cathode at 1 C for 500 cycles (the capacity calculation based on the whole electrode including binder and electrolyte).

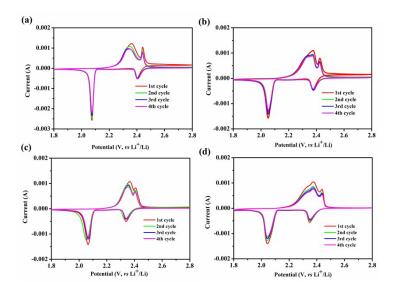


Figure S7. The cyclic voltammetry curves of S@Cu-TDPAT composites with different particle sizes: (a)

100nm; (b) 200nm; (c) 500nm; (d) 1µm.

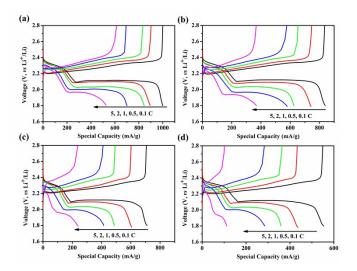


Figure **S8**. The galvanostatic discharge/charge profiles at different current rates of S@Cu-TDPAT with different size: (a) 100nm; (b) 200nm; (c) 500nm; (d) 1μm.

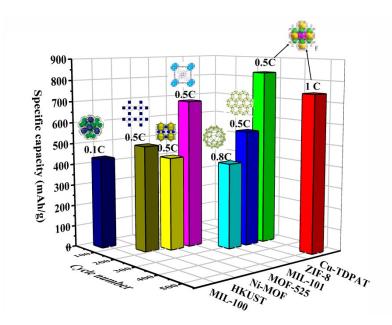


Figure **S9**. Comparison of the cycle performance of the reported partial sulfur/MOFs composite cathode materials.

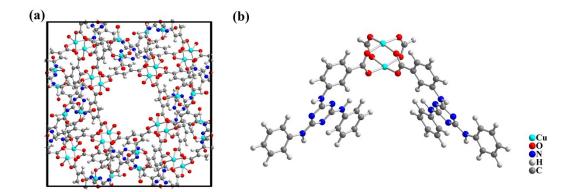


Figure **\$10**. DFT optimized adsorption configuration. (a) Cu-TDPAT crystal cell containing 960 atoms. (b) a segment containing 104 atoms of $Cu_2(TDPAT)_2$.

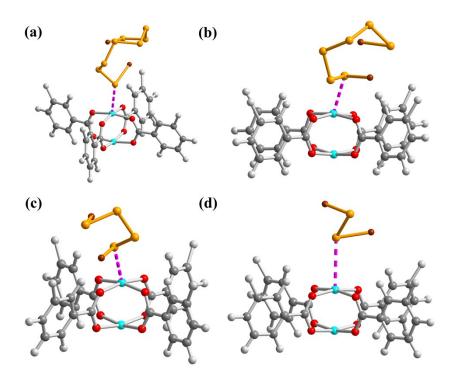


Figure **S11**. The interactions between polysulfide anions and Cu-TDPAT in the cage A. (a) Cu-TDPAT and Li_2S_8 ; (b) Cu-TDPAT and Li_2S_6 ; (c) Cu-TDPAT and Li_2S_4 ; (d) Cu-TDPAT and Li_2S_2 .

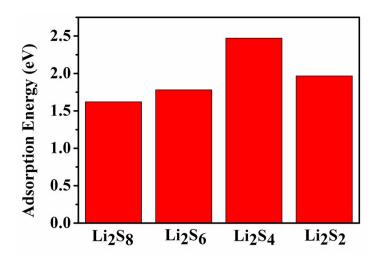


Figure **S12**. Calculated adsorption energy between Li_2S_x and $Cu_2(TDPAT)_2$.

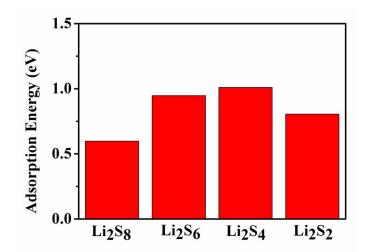


Figure **S13**. Calculated adsorption energy between Li_2S_x and Cu-TDPAT in the cage A.

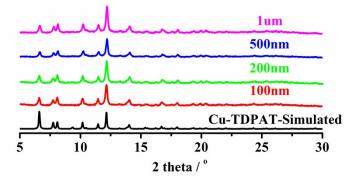


Figure **S14**. PXRD patterns of S@Cu-TDPAT after cycling at 0.5C.