The Crucial Role of a Spacer Material on the Efficiency of Charge Transfer Processes in Organic Donor-Acceptor Junction Solar Cells Supplementary Information

Reed Nieman,^a Hsinhan Tsai,^b Wanyi Nie,^b Adelia J. A. Aquino,^{a,c} Aditya D. Mohite,^b Sergei Tretiak,^{*,b} Hao Li,^d Hans Lischka^{*,a,c}

^a Department of Chemistry and Biochemistry, Texas Tech University Lubbock, TX 79409-1061, USA

^b Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

^c School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin, 300072 P.R.China

^d Department of Chemistry, University of Houston, Houston, Texas 77204. USA

Table of Contents:

Computational Details	S3
Table S1: Vertical excitations of isolated standard trimer – 6-31G basis set	S5
Table S2: Vertical excitations of isolated standard trimer $-6-31G^*$ basis set	S 6
Table S3: Vertical excitations of isolated components $-6-31G^*$ basis set	S 7
Table S4: Vertical excitations of standard trimer – LR environ., 6-31G* basis set	S 8
Table S5: Vertical excitations of standard trimer – LR environ., 6-31G basis set	S9
Table S6: Vertical excitations of standard trimer – SS environ., 6-31G* basis set	S10
Table S7: Vertical excitations of standard trimer – SS environ., 6-31G basis set	S11
Table S8: Vertical excitations of isolated standard trimer $-6-31G^*$ basis, no	S12
freezing	
Table S9: Vertical excitations of isolated extended trimer – 6-31G* basis set	S13
Table S10: Vertical excitations of isolated extended trimer – 6-31G basis set	S15
Table S11: Vertical excitations of extended trimer – SS environ., 6-31G basis set	S17
Cartesian coordinates of the standard and extended thiophene trimer systems	S18-S27
References	S28

Computational details

The two types of trimer structures are shown in Figure 1a (standard trimer) and Figure 1b,c (extended trimer). All structures were optimized as isolated complexes using DFT together with the Perdew–Burke–Ernzerhof (PBE)¹ functional, the $SV(P)^2$ basis, and the Multipole-Accelerated Resolution of the Identity for the Coulomb energy (MARI-J).³ Empirical dispersion corrections were added by means of the D3⁴ approach. Excited states were calculated using the long-range separated density functional, CAM-B3LYP, and two basis sets, 6-31G⁵ and 6-31G^{*6, 7}. D3 dispersion corrections were used for the CAM-B3LYP TD-DFT calculations as well.

Full geometry optimizations of the standard and extended trimer structures would lead to distorted geometries which do not resemble the intended structural arrangements of a donor-spacer-C₆₀ interface since geometrical restrictions of the surrounding environment are missing. To achieve the desired model arrangement, geometry optimization was performed in steps and by freezing a few selected atoms (see Figure 1) to restrict the structural manifold. For the standard trimer, the C₆₀ and T3 monomers were combined and optimized freezing selected atoms. To this C₆₀-T3 structure, P3HT was added as shown in Figure 1a. The whole complex (C₆₀-T3-P3HT) was then optimized. The frozen atoms were located at the end of the chains and at the opposite side of C₆₀, respectively, so that the subunits had sufficient flexibility to come in contact allowing the intersystem distances to be optimized. For the extended trimer, an analogous restricted geometry optimization technique was used as shown in Figure 2b, c.

Since the main objective of this investigation was to determine the relative stability of the CT states with excitations from the π -conjugated polymers to the C₆₀s and the local excitations in the polymers, excitations within the fullerenes were suppressed in most of the calculations by freezing in the TD-DFT calculations the occupied orbitals located on the C₆₀ units. Otherwise, about a dozen of local excitations per C₆₀ unit would have impeded the already expensive calculations and would not have allowed the focus on the actual states of interest. In practice, all the core orbitals along with twenty percent of the highest occupied orbitals, which were localized at the C₆₀ and (C₆₀)₃ units, were kept frozen. Comparison between full and frozen orbital calculations have been performed as well, showing good agreement in energetic ordering of the remaining states in the two calculations.

Solvent effects were taken into account using the conductor-like polarizable continuum model (C-PCM)⁸. Environmental effects on the electronically excited states were investigated on

the basis of the linear response (LR)^{9, 10} and state-specific (SS)¹¹ approaches. In the LR approach, Hartree and exchange-correlation (XC) potentials are linearly expanded with respect to the variation of the time-dependent density of the ground state. In the SS method, the solvation field adapts to changes in the solute wave function for electronic excitations where the energy correction from fast electronic relaxation of the solvent is state-dependent. SS is considered more accurate for describing the excited electronic states¹²⁻¹⁴ with charge distributions significantly different from the ground state such as with polar solvents or CT states in the solute. The SS method is computationally significantly more demanding though and requires that each state be calculated independently. As such, only five states were calculated using the CAM-B3LYP/6-31G* method for the extended trimer which contained, however, representatives of the most important excitation types. For the extended trimer using the CAM-B3LYP/6-31G method, twenty states were calculated, and for the standard trimer using both basis sets, ten states were considered. Dichloromethane (dielectric constant, ε =8.93, refractive index, n=1.42) was chosen to act as a modestly polar environment.

Eve	O(eV)	f	СТ	Direction of	Location of	-
LAC.	52(CV)	J	CI	OT		
				CI	exciton	_
\mathbf{S}_1	2.69	2.08	0.00		P3HT	
S_2	2.83	0.00	0.97	$P3HT \rightarrow C_{60}$		
S_3	2.84	0.00	1.00	P3HT→C ₆₀		
S_4	2.85	0.00	0.99	P3HT→C ₆₀		
S 5	2.87	0.00	0.99	T3→C ₆₀		
S_6	2.87	0.00	0.99	T3→C ₆₀		
\mathbf{S}_7	2.93	0.00	0.99	T3→C ₆₀		
S_8	3.41	1.18	0.01		Т3	
S 9	3.47	0.10	0.00		P3HT	
S_{10}	3.63	0.00	0.97	P3HT→C ₆₀		
S_{11}	3.63	0.00	1.00	P3HT→C ₆₀		
S_{12}	3.65	0.00	0.99	P3HT→C ₆₀		
S ₁₃	3.92	0.02	0.00		P3HT	
S_{14}	3.92	0.02	0.94	T3→C ₆₀		
S15	3.93	0.01	0.94	T3→C ₆₀		
S ₁₆	4.10	0.00	0.98	$P3HT \rightarrow C_{60}$		
S 17	4.11	0.00	0.98	$P3HT \rightarrow C_{60}$		
S_{18}	4.12	0.00	0.99	P3HT→C ₆₀		
S19	4.14	0.02	0.95	$T3 \rightarrow C_{60}$		
S ₂₀	4.16	0.00	0.99	$T3 \rightarrow C_{60}$		

Table S1: Excitation energies Ω of the isolated standard C60-T3-P3HT system using the CAM-B3LYP/6-31G approach

Eve	O(eV)	f	СТ	Direction of	Location of
LAC.	$S_2(CV)$	J	CI	OT	
				CI	exciton
\mathbf{S}_1	2.62	2.04	0.00		P3HT
S_2	2.91	0.00	0.97	P3HT→C ₆₀	
S_3	2.91	0.00	1.00	P3HT→C ₆₀	
S_4	2.92	0.00	0.99	P3HT→C ₆₀	
S_5	2.93	0.00	0.99	T3→C60	
S_6	2.94	0.00	0.99	T3→C ₆₀	
\mathbf{S}_7	2.99	0.00	0.99	T3→C ₆₀	
S_8	3.33	1.16	0.01		Т3
S 9	3.39	0.10	0.00		P3HT
S_{10}	3.70	0.00	0.97	$P3HT \rightarrow C_{60}$	
S_{11}	3.70	0.00	1.00	P3HT→C60	
S_{12}	3.71	0.00	0.99	P3HT→C ₆₀	
S ₁₃	3.87	0.02	0.00		P3HT
S_{14}	3.99	0.02	0.94	T3→C ₆₀	
S_{15}	3.99	0.03	0.94	T3→C ₆₀	
S16	4.20	0.03	0.95	T3→C ₆₀	
S 17	4.23	0.00	0.98	P3HT→C ₆₀	
S_{18}	4.24	0.00	0.98	P3HT→C ₆₀	
S_{19}	4.25	0.00	0.99	P3HT→C ₆₀	
S ₂₀	4.27	0.00	0.99	T3→C ₆₀	

Table S2: Excitation energies Ω of the isolated standard C60-T3-P3HT system using the CAM-B3LYP/6-31G* approach

Exc.	$arOmega\left(\mathrm{eV} ight)$	f
	P3HT	
S_1	2.62	2.10
S_2	3.39	0.00
S_3	3.87	0.02
S_4	4.06	0.14
S_5	4.49	0.01
S_6	4.63	0.00
\mathbf{S}_7	4.84	0.04
S_8	4.86	0.00
S 9	4.89	0.00
S_{10}	4.93	0.01
	Т3	
\mathbf{S}_1	3.30	1.09
S_2	4.54	0.00
S_3	4.91	0.00
S_4	5.07	0.00
S_5	5.13	0.00
S_6	5.15	0.01
\mathbf{S}_7	5.24	0.01
S_8	5.30	0.06
S 9	5.41	0.00
${S}_{10}$	5.43	0.02
	C60	
S_1	2.47	0.00
S_2	2.47	0.00
S ₃	2.47	0.00
S 4	2.53	0.00
S 5	2.53	0.00
S_6	2.53	0.00
S 7	2.56	0.00
S_8	2.56	0.00
S 9	2.56	0.00
S_{10}	2.57	0.00

Table S3: Lowest excitation energies Ω of the isolated components P3HT, T3 and C60 using the CAM-B3LYP/6-31G* approach.

Exc.	$\Omega ({ m eV})$	f	CT	Direction of	Location of
				CT	exciton
\mathbf{S}_1	2.53	2.22	0.00		P3HT
S_2	3.12	0.00	0.97	P3HT→C ₆₀	
S_3	3.12	0.00	1.00	P3HT→C ₆₀	
S_4	3.13	0.00	0.99	$P3HT \rightarrow C_{60}$	
S_5	3.22	0.60	0.57	T3→C ₆₀	
S_6	3.23	0.14	0.90	T3→C ₆₀	
\mathbf{S}_7	3.24	0.48	0.56	T3→C ₆₀	
S_8	3.27	0.10	0.00		P3HT
S 9	3.29	0.02	0.99	T3→C ₆₀	
S_{10}	3.87	0.01	0.00		P3HT
S_{11}	3.91	0.00	0.97	P3HT→C ₆₀	
S_{12}	3.91	0.00	1.00	P3HT→C ₆₀	
S ₁₃	3.92	0.00	0.99	P3HT→C ₆₀	
S_{14}	3.98	0.19	0.00		P3HT
S 15	4.28	0.01	0.85	T3→C ₆₀	
S_{16}	4.29	0.13	0.86	T3→C ₆₀	
S_{17}	4.37	0.00	1.00	P3HT→T3	
S_{18}	4.45	0.00	0.97	P3HT→C ₆₀	
S 19	4.45	0.00	0.99	P3HT→C ₆₀	
S_{20}	4.46	0.00	0.99	P3HT→C ₆₀	

Table S4: Excitation energies Ω of the standard C60-T3-P3HT system the using the CAM-B3LYP/6-31G* approach in the LR environment

Exc.	$\overline{\Omega} (\mathrm{eV})$	f	СТ	Direction of	Location of		
				СТ	exciton		
S_1	2.60	2.26	0.0		P3HT		
S_2	3.08	0.00	0.97	P3HT→C ₆₀			
S_3	3.08	0.00	1.00	P3HT→C ₆₀			
S 4	3.09	0.00	0.98	$P3HT \rightarrow C_{60}$			
S_5	3.20	0.01	0.99	T3→C ₆₀			
S_6	3.21	0.01	0.99	T3→C ₆₀			
S 7	3.27	0.02	0.99	T3→C ₆₀			
S_8	3.32	1.21	0.01		Т3		
S 9	3.35	0.09	0.00		P3HT		
S_{10}	3.87	0.00	0.97	P3HT→C60			
S_{11}	3.88	0.00	1.00	P3HT→C60			
S ₁₂	3.89	0.00	0.98	P3HT→C ₆₀			
S ₁₃	3.92	0.01	0.00		P3HT		
S14	4.08	0.20	0.00		P3HT		
S15	4.28	0.05	0.91	T3→C ₆₀			
S ₁₆	4.28	0.04	0.91	T3→C60			
S 17	4.35	0.00	1.00	$P3HT \rightarrow C_{60}$			
S_{18}	4.35	0.00	0.98	P3HT→C ₆₀			
S ₁₉	4.36	0.00	0.99	P3HT→C ₆₀			
S20	4.40	0.00	1.00	P3HT→T3			

Table S5: Excitation energies Ω of the standard C60-T3-P3HT system the using the CAM-B3LYP/6-31G approach in the LR environment

Exc.	Ω (eV)	f	Direction of	Location of
		5	CT	Exciton
S_1	1.29	0.00	P3HT→C ₆₀	
S_2	1.29	0.00	P3HT→C ₆₀	
S_3	1.29	0.00	P3HT→C ₆₀	
S_4	1.29	0.00	$P3HT \rightarrow C_{60}$	
S_5	1.88	0.00	T3→C ₆₀	
S_6	1.88	0.00	T3→C60	
\mathbf{S}_7	1.88	0.00	T3→C60	
S_8	1.88	0.00	T3→C60	
S 9	1.90	0.00	T3→C ₆₀	
S ₁₀	2.63	2.04		P3HT

Table S6: Excitation energies Ω of the standard C60-T3-P3HT system using the CAM-B3LYP/6-31G* approach in the SS environment

	Exc.	$\Omega\left(\mathrm{eV}\right)$	f	СТ	Direction of	Location of
					СТ	Exciton
_	S_1	1.23	0.00	1.00	P3HT→C ₆₀	
	S_2	1.23	0.00	1.00	P3HT→C60	
	S_3	1.24	0.00	1.00	P3HT→C60	
	S_4	1.84	0.00	1.00	T3→C ₆₀	
	S_5	1.84	0.00	1.00	T3→C ₆₀	
	S_6	1.86	0.00	1.00	T3→C ₆₀	
	\mathbf{S}_7	2.06	0.00	1.00	P3HT→C60	
	S_8	2.06	0.00	1.00	P3HT→C60	
	S 9	2.07	0.00	1.00	$P3HT \rightarrow C_{60}$	
_	S_{10}	2.70	2.07	0.00		P3HT

Table S7: Excitation energies Ω of the standard C60-T3-P3HT system using the CAM-B3LYP/6-31G approach in the SS environment

		C	OT		T (° C
Exc.	$\Omega(eV)$	J	CI	Direction of	Location of
				CT	exciton
\mathbf{S}_1	2.47	0.00	0.01		C60
\mathbf{S}_2	2.47	0.00	0.00		C60
S_3	2.48	0.00	0.01		C60
S_4	2.52	0.00	0.01		C60
S_5	2.53	0.00	0.00		C60
S_6	2.53	0.00	0.01		C60
S_7	2.56	0.00	0.01		C60
S_8	2.56	0.00	0.01		C60
S 9	2.57	0.00	0.00		C60
\mathbf{S}_{10}	2.57	0.00	0.00		C60
S_{11}	2.62	2.03	0.00		P3HT
S_{12}	2.84	0.00	0.01		C60
S ₁₃	2.85	0.00	0.01		C60
S_{14}	2.85	0.00	0.01		C60
S_{15}	2.86	0.00	0.01		C60
S_{16}	2.86	0.00	0.01		C60
S_{17}	2.91	0.00	1.00	$P3HT \rightarrow C_{60}$	
S_{18}	2.91	0.00	1.00	P3HT→C ₆₀	
S 19	2.92	0.00	1.00	P3HT→C ₆₀	
S20	2.93	0.00	1.00	T3→C ₆₀	

Table S8: Excitation energies Ω of the isolated standard C60-T3-P3HT system using the CAM-B3LYP/6-31G* approach (only core orbitals were frozen)

Exc.	$\Omega (\mathrm{eV})$	f	СТ	Direction of CT	Location of exciton
1 ¹ A	2.33	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
2 ¹ A	2.37	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
3 ¹ A	2.38	0.00	1.00	(T3)₃→(C60)₃	
4 ¹ A	2.56	0.01	0.99	(T3) ₃ →(C ₆₀) ₃	
5 ¹ A	2.59	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
6 ¹ A	2.62	0.00	0.99	(T3) ₃ →(C ₆₀) ₃	
7 ¹ A	2.67	1.92	0.00		P3HT
$8 {}^{1}A$	2.74	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
9 ¹ A	2.75	0.00	1.00	(T3)₃→(C60)₃	
10^{-1} A	2.76	0.00	1.00	(T3)₃→(C60)₃	
11 ¹ A	2.78	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
12 ¹ A	2.79	0.00	0.99	(T3) ₃ →(C ₆₀) ₃	
13 ¹ A	2.80	0.00	1.00	(T3)₃→(C ₆₀)₃	
14 ¹ A	2.81	0.00	0.98	(T3) ₃ →(C ₆₀) ₃	
15 ¹ A	2.82	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
16 ¹ A	2.82	0.00	1.00	P3HT→(C60)₃	
17 ¹ A	2.83	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
18 ¹ A	2.85	0.00	1.00	P3HT→(C60) ₃	
19 ¹ A	2.89	0.00	1.00	P3HT→(C ₆₀) ₃	
20 ¹ A	2.96	0.00	0.97	(T3) ₃ →(C ₆₀) ₃	
21 ¹ A	2.96	0.00	0.99	(T3)₃→(C60)₃	
22 ¹ A	2.97	0.00	0.98	(T3) ₃ →(C ₆₀) ₃	
23 ¹ A	3.02	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
24 ¹ A	3.04	0.00	1.00	(T3)₃→(C60)₃	
25 ¹ A	3.05	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
26 ¹ A	3.06	0.00	1.00	P3HT→(C60) ₃	
27 ¹ A	3.07	0.00	1.00	P3HT→(C60)₃	
28 ¹ A	3.08	0.00	1.00	P3HT→(C ₆₀) ₃	
29 ¹ A	3.10	0.00	0.10		(T3) ₃
30 ¹ A	3.14	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
31 ¹ A	3.15	0.00	1.00	(T3)₃→(C60)₃	
32 ¹ A	3.15	0.00	1.00	P3HT→(C60) ₃	
33 ¹ A	3.16	0.00	1.00	P3HT→(C60) ₃	

Table S9: Excitation energies Ω of the isolated extended (C60)₃-(T3)₃-P3HT system using the CAM-B3LYP/6-31G* approach

34 ¹ A	3.16	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
35 ¹ A	3.17	0.00	1.00	P3HT→(C60) ₃	
36 ¹ A	3.26	0.07	0.03		(T3) ₃
37 ¹ A	3.28	0.00	0.99	(T3)₃→(C60)₃	
38 ¹ A	3.29	0.00	0.99	(T3) ₃ →(C ₆₀) ₃	
39 ¹ A	3.29	0.00	0.97	(T3) ₃ →(C ₆₀) ₃	
40 ¹ A	3.43	1.38	0.03		P3HT/(T3)₃

Exc.	$\Omega ({ m eV})$	f	СТ	Direction of	Location of
				CT	exciton
S_1	2.24	0.00	1.00	(T3)₃→(C60)₃	
S_2	2.28	0.00	1.00	(T3)₃→(C ₆₀)₃	
S_3	2.30	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_4	2.47	0.01	0.99	(T3)₃→(C60)₃	
S 5	2.51	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_6	2.54	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_7	2.68	0.00	1.00	(T3)₃→(C60)₃	
S_8	2.69	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S 9	2.70	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{10}	2.71	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₁₁	2.72	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₁₂	2.73	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₁₃	2.73	0.00	1.00	$P3HT \rightarrow (C_{60})_3$	
S_{14}	2.74	1.96	0.00	(,.	P3HT
S 15	2.75	0.00	0.98	(T3) ₃ →(C ₆₀) ₃	
S ₁₆	2.75	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S17	2.76	0.00	1.00	P3HT→(C ₆₀) ₃	
S_{18}	2.77	0.00	0.97	(T3) ₃ →(C ₆₀) ₃	
S 19	2.79	0.00	1.00	P3HT→(C60) ₃	
S_{20}	2.92	0.00	0.98	(T3)₃→(C ₆₀)₃	
S_{21}	2.92	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{22}	2.93	0.00	0.97	(T3) ₃ →(C ₆₀) ₃	
S ₂₃	2.96	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{24}	2.97	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₂₅	2.99	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₂₆	3.00	0.00	1.00	P3HT→(C ₆₀) ₃	
S ₂₇	3.01	0.00	1.00	P3HT→(C60) ₃	
S_{28}	3.02	0.00	1.00	P3HT→(C60) ₃	
S_{29}	3.07	0.00	1.00	(T3)₃→(C ₆₀)₃	
S30	3.08	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₃₁	3.09	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₃₂	3.10	0.00	1.00	P3HT→(C60) ₃	
S ₃₃	3.11	0.00	1.00	P3HT→(C ₆₀) ₃	
S ₃₄	3.11	0.00	1.00	P3HT→(C60) ₃	

Table S10: Excitation energies Ω of the isolated extended (C60)₃-(T3)₃-P3HT system using the CAM-B3LYP/6-31G approach

S35	3.15	0.00	0.11		(T3) ₃
S_{36}	3.23	0.00	0.99	(T3) ₃ →(C ₆₀) ₃	
S 37	3.23	0.00	0.99	(T3) ₃ →(C ₆₀) ₃	
S ₃₈	3.24	0.00	0.97	(T3) ₃ →(C ₆₀) ₃	
S39	3.32	0.10	0.03		(T3)₃
S_{40}	3.49	1.97	0.08		(T3) ₃

Exc.	$\Omega ({ m eV})$	f	СТ	Direction of	Location of
				СТ	exciton
\mathbf{S}_1	1.59	0.00	1.00	P3HT→(C60)3	
S_2	1.59	0.00	1.00	P3HT→(C ₆₀) ₃	
S_3	1.60	0.00	1.00	P3HT→(C ₆₀) ₃	
S_4	1.61	0.00	1.00	P3HT→(C60) ₃	
S_5	1.77	0.00	1.00	(T3)₃→(C60)₃	
S_6	1.77^{a}	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
\mathbf{S}_7	1.88	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_8	1.91	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S 9	1.91	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
${S}_{10}$	1.91	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{11}	1.91	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₁₂	2.10	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S ₁₃	2.10	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{14}	2.10	0.00	1.00	(T3)₃→(C60)₃	
S 15	2.12	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{16}	2.12	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S_{17}	2.13	0.00	1.00	(T3)₃→(C60)₃	
S_{18}	2.13	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S 19	2.21 ^b	0.00	1.00	(T3) ₃ →(C ₆₀) ₃	
S20	2.75	1.92	0.00		P3HT

Table S11: Excitation energies Ω of the extended C60-T3-P3HT system using the CAM-B3LYP/6-31G approach in the SS environment

^aExcitation energy averaged over two oscillating energies: 1.77 eV and 1.76 eV, ^bExcitation energy averaged over three oscillating energies: 2.12 eV, 2.21 eV, 2.29 eV

Cartesian coordinates of the standard thiophene trimer optimized using the PBE/SV(P) method

С	3.1788433	-3.3404777	8.7294822
С	2.1629913	1.9236048	4.2388618
С	4.1932961	-2.6019358	9.3660229
С	3.1778863	2.6620684	4.8745973
С	0.9111888	0.5207736	9.4177558
С	5.6498111	-2.2595722	5.0899862
C	0.7072100	1.5797260	8.5142357
C	5.4457160	-1.2004282	4.1863733
C	5,2231193	1.7759497	8.8185697
C	6 1760029	1 2165311	7 9477714
C	1 7887723	-2 9153880	8 8404798
C	3 3868397	-3 8532528	7 3812431
C	0 9038546	1 6708448	4 9280168
C	2 85/2610		10 126///0
C	3.0343010	0 7226660	2 4705501
C	Z.30Z/034 E 4E22040	0.7320000	0 6766070
d	5.4522949	-2.3493070	6.0/009/6
d	2.90901/0	3.1/40/10	0.2229330
d	4.50/039/		4.7031900
C	0.4/23816	-0.825/546	9.0/36018
Ċ	4.6001638	-3.24/6/20	5.30345/4
C	0.0560245	1.3304607	7.2343982
C	2.1723050	0.4125604	10.1403882
С	4.1847892	-1.0928887	3.4645885
С	6.3001643	-2.0096791	6.3699936
С	1.7564833	2.5685534	8.3008657
С	5.8842093	0.1463539	4.5304211
С	0.1827602	-2.2568749	7.0684542
С	2.1226607	-3.3960890	5.2954145
С	-0.1614767	-0.4822977	5.5540328
С	4.5756743	0.9416625	9.8234645
С	1.7802812	-1.6217357	3.7794169
С	6.5163764	-0.1971328	8.0505971
С	4.2335543	2.7169456	8.3085353
С	6.1731903	1.5774043	6.5354837
С	4.8957248	1.0877906	4.0196072
С	1.7544677	2.9302593	6.8884018
С	5.6527671	-2.8441248	7.3752138
С	3.8442756	0.3225384	3.3604780
С	2.5127749	-1.0013486	10.2433980
С	0.7034818	2.1651094	6.2296245
С	4.6023063	-3.6095170	6.7161106
С	1.4615750	-1.7665152	9.5838030
С	6.5119545	0.3871767	5.7658266
С	2,9740209	2.4637688	8.9981774
C	6.7240987	-0.7097519	6.7018760
C	3.1709557	-2.0460747	3.6713027
C	3 1855132	1 3668032	9 9342626
C	-0 3683533	0 0303108	6 9025884
C	3 3826240	-3 1430356	4 6062261
C	-0 1550445	-1 0668030	7 8282820
C	5 9106001	2 4852720	6 0122060
C	J.ZIOUJUI A 9215761	3 0660006	6 0/55/09
C	T.4313/01 E 0017711	3.0000220 1 0000745	0.0106071
d	3.091//11	-1.0023/45	3.UZU00/1 2.corarra
C a	1.452/560	-0.2566492	3.005/552
C	4.9044900	-0.4228600	9.9228900

С	0.4646591	0.3235571	4.5852359
С	2.1248046	-3.7449111	6.6581974
С	1,1378850	-3.1648356	7,5604205
C	1 1328394	-2 4553776	4 7848566
C	0 1801624	_1 8058660	5 6560330
С 11	6 0650075	-1.0930009	10 05000000
п	-0.0050075	2./125004	-10.0552504
Н	-1.3800760	1.1845181	-7.5117040
Η	0.0068568	0.9586814	-5.2741936
Η	-5.8144573	2.6281924	-13.3634146
S	-4.0092456	1.5136000	-8.9035757
С	-1.8223752	0.9159620	-6.5402518
С	-1.0787253	0.7892320	-5.3413420
C	-6 1216965	1 5996433	-10 7894357
U U		2 5077017	-15 9054685
п 	-5.5004659	2.3977017	-15.9054085
н	1.035/431	0.865/088	0.2323183
C	-5.6302500	1.1412700	-9.4453200
S	0.2458709	0.3403016	-2.4062605
С	-3.1838603	0.6499844	-6.3848464
С	-5.8886589	1.5141855	-13.3451263
Н	-7.2028625	1.3429161	-10.8576885
C	-1 8513408	0 4225165	-4 2377820
C	-1 2111793	0 6010043	-7 3686301
d		0.0910043	11 0054060
C	-5.3/33/20	0.9973138	-11.9954969
C	-1.4438404	0.2113002	-2.8654838
Η	-4.2858923	1.2271622	-11.9017870
С	-5.5826059	1.4853137	-15.9067990
Η	-6.9755877	1.2807902	-13.4450004
С	0.9716800	-0.0225886	0.3010553
С	-0.1096700	0.0157000	-0.7254500
C	-6 3063718	0 4201528	-8 4722341
c	-3 532505/10	0 2/3/00/	
2	-5.5525054	0.2434094	-+./1J11/J
C	-5.5336142	0.1652119	-/.3042301
С	-5.1289946	0.9382520	-14.5462370
Η	-4.0388282	1.1442651	-14.4187616
Η	-6.6666390	1.2663216	-16.0579095
С	-2.2232074	-0.0904036	-1.7476595
Н	0.5082800	-0.0247917	1.3114517
C	-1 4683454	-0 2036647	-0 5484934
U U		1 2602217	-18 0/18736
п	- 3.0090973	1.3092217	17 0760111
C	-4.7730619	0.91//443	-17.0769111
Н	-3.6856092	1.1222917	-16.9498139
Η	-7.3464061	0.0841890	-8.6057475
Η	3.0804600	-1.0703047	0.8558330
Η	-3.3153472	-0.2178138	-1.8011185
Н	-5.8994181	-0.4026978	-6.4349046
S	2.0282503	-1.5392970	0.1134278
ਹ ਸ	-5 4546791	-0 1137828	-11 9554163
и П	1 0047400	0.12171020	0 1256666
п 	-1.9047409	-0.434/401	14 5450500
H	-5.22/0602	-0.1/41923	-14.5452561
Н	-4.8958974	-0.1867399	-17.1560598
Η	-11.7860250	5.1898952	-16.0268700
Η	-18.5926865	1.6635340	-12.5921539
Н	-5.1535970	8.2423002	-19.0021217
Н	-19.3799083	1.6577121	-14.1996120
С	-18,9567699	0.9988644	-13,4079196
C	-12 1497150	4 1407320	-16 0485265
	LZ.THO/TO/	π .	10 2002440
н	-0.5915930	1.2386428	-19.3902449

Н	-13.1385820	4.1368388	-16.5597800
С	-5.5341566	7.1999917	-19.0424890
н	-12.3278743	3.8203689	-14.9972206
Н	-19.7862224	0.3842989	-12,9992387
н	-5 5510789	6 8059427	-18 0007238
и ц	-16 4458642	1 7259108	-14 6460102
п тт		1.7259100	
п	-9.7262165	4.0152000	-17.3656979
H	-3.2062558	7.9096898	-20.5194546
C	-17.8467300	0.1373300	-13.9485700
С	-11.1562079	3.2500067	-16.7459431
С	-16.6527600	0.6486300	-14.5425100
С	-9.9814921	3.7440955	-17.3694868
С	-4.6764948	6.3565353	-19.9470172
С	-3.5340609	6.8629514	-20.6193728
S	-13.8124497	1.4921550	-15.6960936
S	-7.2016281	4.5636349	-18.6710842
S	-0.8410700	7,7106500	-22.0794500
C	-17 8547164	-1 2495278	-13 9473804
C	-11 2811371	1 8537275	-16 8793970
C	_15 7510068	_0 2296242	-1/ 969789/
d	-13.7510000	-0.5290245	-14.9097094
C a	-4.8992011	4.99601/6	-20.2343451
C	-9.1850382	2.///3565	-17.9922541
С	-2.8554013	5.9407419	-21.4201074
С	-12.3169912	0.9482012	-16.4434995
Η	-18.6428738	-1.9164591	-13.5708879
С	-14.4428610	-0.1417965	-15.5620853
С	-5.9338277	4.0920759	-19.7938299
С	-7.9606180	2.9785779	-18.7279291
Н	1.2050720	7.9204683	-23.4407526
С	0.3988934	7.2220911	-23.1780342
С	-1.6548903	6.1545401	-22.1998726
S	-16 4252100	-1 9255000	-14 6473000
g	-9 9178951	1 1946046	-17 7741163
c c	-3 6689682	1 20720/0	-21 2224764
C C	12 2400704	4.3073940	16 5570100
d		-0.4449300	-10.0072100
C a	-13.518310/	-1.0/21252	-16.0/12549
C	-6.1131595	2.7522453	-20.1543382
С	0.2052600	5.9274900	-23.6172200
С	-7.2338535	2.1113250	-19.5663057
С	-0.9629500	5.3021700	-23.0779600
Η	-11.5059407	-1.0152687	-16.9940790
Η	0.8813968	5.4213832	-24.3235780
Н	-5.4337512	2.2332233	-20.8484638
С	-13.7210218	-2.5628201	-16.1071925
С	-1.3680593	3,8926129	-23,4159346
н	-2 4085768	3 8405178	-23 8089542
C	-7 5762894	0 6688544	-19 8207263
с u	-14 6475768	-2 8/21967	-16 6578357
ц ц	_12 Q110/71	_2.0731907	
п 17	-13.01194/1	-4.9941095	-10.000019
н 	-0.0249532	0.5446203	-20.1/20956
H	-7.4683698	0.0540386	-18.8979386
Н	-1.3258550	3.2228853	-22.5263665
Η	-0.6931645	3.4663999	-24.1881172
Н	-12.8647905	-3.0623344	-16.6074107
Η	-6.9032375	0.2366353	-20.5908281

Cartesian coordinates of the extended thiophene trimer optimized using the PBE/SV(P) method

С	-11.1836400	-1.8013000	0.8684000
С	-10.6280537	-0.9349744	-0.0601851
С	-9.2104831	-0.8741190	-0.0092520
С	-8.6575407	-1.6954616	0.9697816
S	-9 9306216	-2 5398714	1 8364912
C	-4 7434830	-1 8515110	1 3130245
C	-5 2863454	-2 6852699	2 2943348
C	-6 7015258	-2 7179561	2.2215310
C	-7 2601102		1 2057100
c c		-1.0095701	0 2772771
с С	10.0100200	2 0000104	1 12000/2
d	-12.033390	1 2024060	1.1309042
d	-13.1900410	-1.3034900	2.3920525
C	-14./155996	-1.4668327	2.5311569
Ċ	-15.2635/55	-0.5392801	3.6233554
C	-16.7941829	-0.4963806	3.7222655
C	-17.2952849	0.4899346	4.7814011
С	-0.8433000	-1.4757200	0.9899200
С	-1.4250306	-0.7765564	-0.0564032
С	-2.8417784	-0.8332735	-0.0558998
С	-3.3628855	-1.5750822	1.0026232
S	-2.0662728	-2.1969362	2.0107940
С	0.6108229	-1.6244486	1.2776245
S	1.0615344	-0.8329834	2.8986998
С	-11.5693900	2.3395800	1.5824900
С	-11.0067493	1.7552171	2.7077908
С	-9.5886583	1.6543270	2.6574829
С	-9.0390962	2.1688125	1.4856090
S	-10.3163842	2.7831442	0.4447472
С	-5.1162140	2.2670912	1.0711936
С	-5.6836447	2.5164018	-0.1800481
С	-7.1010226	2.5051149	-0.1713551
С	-7.6506252	2.2510946	1.0874077
S	-6.3737759	2.0459603	2.2731853
C	-13.0274416	2.5248277	1.2602135
C	-13.5281891	1.6145858	0.1164277
C	-15.0543059	1.4717974	0.0347400
C	-15 4954247	0 3941661	-0 9677659
C	-16 9754994	-0 0033645	-0 8797526
C	-17 3287767	-1 1769048	-1 7985268
C	-1 1970700	2 2836200	1 4645700
C	-1 7247741	1 5914280	2 5450929
C	2 1440050	1 5201260	2.5450525
d	-3.1449950	1.5201300 2.167421E	1 4420265
C C	-3.7209193	2.10/4215	1.4420305
2	-2.4/59110	2.0703974	0.4220000
C	0.2404968	2.5462605	1.1495144
S	0.6056704	2.1445536	-0.6269353
H	-11.2348222	-0.3615929	-0.//5/143
H	-8.5965520	-0.2506818	-0.6757671
H	-4.6623365	-3.2628642	2.9935631
Н	-7.3077674	-3.3183997	2.9801406
Η	-12.8075971	-3.1895281	1.2185077
Η	-13.2130485	-1.7531682	0.2497874

Η	-12.8835261	-0.3159107	2.3444880
Н	-12.6960593	-1.7972721	3.3020750
Н	-15.0278434	-2.5186815	2,7330066
н Н	-15 1861986	-1 1932131	1 5575580
и П	1/ 000/1/0	0 1061066	2 1227562
п 11		0.4904000	4 6115017
н	-14.83655/6	-0.8344004	4.611581/
Η	-17.1799526	-1.5199515	3.9431468
Η	-17.2219346	-0.2221820	2.7281407
Η	-16.9597887	1.5269682	4.5532705
Н	-16.9077486	0.2289807	5.7925385
н	-18,4048337	0.5076350	4.8360449
ч		-0.2411477	
11 TT	2 4701042	0.2545422	0.0070000
п	-3.4/01043	-0.3545432	-0.0140993
н	0.9181012	-2.69193//	1.3288492
Η	1.1833124	-1.1322343	0.4631718
Η	2.3231702	-1.3641601	2.9709948
Η	-11.6152876	1.3989729	3.5529410
Н	-8.9743664	1.1947647	3.4466354
Н	-5.0745240	2,6698329	-1.0838720
н	-7 7227585	2 6599296	-1 0665334
тт тт	12 2522201	2 500//06	1 0222021
п 	-13.2333321	3.3904490	1.0222021
Н	-13.5962054	2.28/5332	2.18/9853
Η	-13.0881289	0.6061446	0.2695638
Η	-13.1202391	1.9760032	-0.8559272
Η	-15.5255077	2.4503045	-0.2201416
Η	-15.4410156	1.2011841	1.0457199
Н	-14.8810155	-0.5235468	-0.7979803
н	-15 2543385	0 7215724	-2 0069703
и и	-17 6205548	0 8759729	-1 1164413
п тт	17 020007	0.0759729	-1.1104413
н	-17.21/988/	-0.2/650/9	0.1/49699
Н	-16.6890450	-2.0613339	-1.5774127
Η	-17.1699212	-0.9220263	-2.8709326
Η	-18.3855339	-1.4981473	-1.6773895
Η	-1.0909096	1.1177517	3.3089480
Н	-3.7402415	0.9820032	3.2863997
н	0.5051792	3.6156979	1.3047646
 บ	0 8701072	1 0162720	1 9129597
11 TT	1 7040720	1.9102720	
н	1./842/39	2.8388198	-0.6955249
S	2.1008674	-3.7497279	-3.7551390
С	1.4641516	-3.1744107	-2.1094144
С	0.0103000	-3.4659800	-1.9524600
С	-0.6028088	-4.2642077	-0.9970881
S	-1.1854151	-2.7247679	-2.9922592
С	-2.0211552	-4.2561401	-1.0732055
C	-2 5139856	-3 4533116	-2 1021040
C	2.9159050	2 16/1/77	2.1021010
C a	-3.8801900	-3.10414//	-2.4515810
C	-4.3939970	-2.1/85958	-3.3012866
S	-5.2022998	-4.0839479	-1.7413648
С	-5.8086170	-2.1565534	-3.3640183
С	-6.4200915	-3.1242832	-2.5626608
С	-7.8255655	-3.3711248	-2.3329328
С	-8.4291664	-4.2193183	-1.4041708
S	-9 0616166	-2 5156309	-3 2426437
C	-9 8483047	-4 1676285	-1 4271811
C	10.2602047	-1.10/0200	1.74/1011
	-10.30UZ9UU	-3.2/09400	-2.3010400
C	-11./993185	-2.9221539	-2.6168493
С	-12.6445741	-4.0008189	-3.3247475

С	-14.1367337	-3.6386259	-3.3478335
С	-15.0226921	-4.6603378	-4.0725433
C	-16 5202272	-4 3214167	-4 0396368
C	-17 3908640	-5 3165706	_4 8126488
	10 4005750	4 740000	1.0120400
п	-10.4905/56	-4.7422903	-0.7427097
н	-/.84/4/1/	-4.8320984	-0.6984946
Η	-3.7446003	-1.4762789	-3.8465629
Η	-6.3845989	-1.4344855	-3.9626161
Η	-11.8589453	-1.9716630	-3.1933065
Н	-12.2671983	-2.7053949	-1.6293431
н	-12.5047996	-4.9755993	-2.8026241
 U	-12 2658172		_1 3620074
11 TT	14 2677045	1.1302003	2 0014206
н	-14.20//045	-2.035/3/5	-3.0214320
Н	-14.4966509	-3.5189170	-2.2970629
Η	-14.8654863	-5.6708330	-3.6238819
Η	-14.6884496	-4.7477492	-5.1341144
Η	-16.6724985	-3.2943647	-4.4486819
Н	-16.8659579	-4.2719137	-2.9802438
н	-17,2939776	-6.3470454	-4,4015212
н	-17 1003427	-5 3606210	-5 8872386
ц	10 /666505	5.0000210	1 7650156
п	-18.4000505	-5.0424950	-4.7038130
н	-0.03181/5	-4.8253548	-0.24109/1
Η	-2.6783559	-4.7937069	-0.3733188
Η	1.6697488	-2.0826467	-2.0307753
Η	2.0232962	-3.6842812	-1.2956407
Н	3.3095577	-3.1127590	-3.6560118
С	9.1574028	-8.4794361	-7.1400158
Ċ	10 3317258	-1 7052475	0 1228037
C	8 8055288	-7 9830529	-5 8711388
C	0.00000200	F 1600670	10 0264601
c	9.0002000	1 4070542	1 4020507
C	10.03/3595	-1.49/0543	1.4830597
С	9.6468234	4.3986799	9.1180708
С	10.2095159	6.7367649	9.7267548
С	8.2049047	-9.2794774	-7.8997885
С	9.5199693	-2.6223437	-0.6670594
С	10.3932982	4.5582969	7.8763776
С	7,4879902	-8,2690757	-5.3166526
Ċ	8 9188834	-2 1986983	2 1016001
C	10 9201566	6 8000313	8 5280402
d	11 0004500		7 5064027
C	11.0234532	5.7825005	7.5004037
C	9.8834939	-7.6321872	-8.0783448
С	10.6906754	-0.5753959	-0.7258458
С	9.1670797	-6.6213848	-5.4952394
С	10.0923234	-0.1533029	2.0433063
С	6.9331889	-9.5553217	-7.3646295
С	8.4404212	-3.3004986	-0.0700436
C	8.2897372	5.7593213	10.6870892
C	6 5682774	-9 0410245	-6 0503692
d	0.1002/74	2 0041264	1 22007/1
C	0.1345450	-3.0041304	1.3390741
Ċ	0.4/30/38	3.3002416	0.0309500
C	9.3463379	7.8113014	10.2018497
С	8.3423221	-8.9267367	-9.3074649
С	9.3773503	-2.0584633	-2.0039110
С	10.2322454	-6.3180929	-7.7155553
С	10.7439800	0.7227000	-0.1847400
С	9.8680953	-5.8035430	-6.4013039
С	10.4400845	0.9379636	1.2240825
-			0 0 _ 0

С	9.3795861	-7.9089471	-9.4177292
С	10.1019380	-0.7944896	-2.0409426
С	9.6818023	3.8386069	6.8276630
Ċ	7 0350701	-7 0842962	-4 5980375
C	8 2819093	-1 2878226	3 0445939
c	0.2010000	7 2070220	10 7052202
C a	0.1590002	7.2070349	10.7952562
C	8.0/32032	-6.066/030	-4./0830/5
С	9.0067561	-0.0234834	3.0076212
С	7.1572452	4.9697138	10.4153551
С	7.2507753	3.8609635	9.4741197
С	10.8133600	8.1254100	7.7607500
С	8.4953566	3.2334766	7.4213313
С	10,9652638	6.3317795	6.2372625
C	5 7528692	-9 4889099	-8 2179830
C	7 1798038	_3 4394832	-0.7877211
c	F 160000	0 6570522	6 0017272
C a	5.1025541		-0.0917272
C	6.6845164	-3.0892158	1.491/9/9
С	9.2335046	9.0024329	9.4615757
С	7.2036048	-8.8626897	-10.1311818
С	8.1601421	-2.1908328	-2.6958814
С	10.8344934	7.7799498	6.3452609
С	9.9799607	9.1620261	8.2195166
С	9.6246287	4.3698592	5.5260917
C	5 6782628	-6 7131070	-4 6397140
C	10 0895132	-5 2337850	-8 6796075
c		1 2022205	2 1021706
c	10.0020042	-1.2933203	3.1931/00
C a	10.2078001	1.8483340	-0.9408609
C	9.2422077	-6.8625448	-10.3479320
С	9.5848043	0.2921498	-2.7711058
С	10.2778815	5.6377394	5.2245239
С	9.4999808	-4.4010423	-6.5537225
С	9.7146358	2.1969050	1.3390107
С	5.8857579	-9.1488755	-9.5770893
С	7.0426162	-2.8908652	-2.0756956
C	4 6590050	-8 9330885	-7 4312474
C	6 9021595	7 8148737	10 6278677
d	6 0044010	2 2001422	0 1770001
C	0.0944210	-3.3001422	0.1//0821
C a	7.7167491	-4./1414/0	-4.8593967
C	8.3058540	1.1909629	3.1174197
С	4.7255127	-7.5128210	-5.3996309
С	6.0697803	-2.2099171	2.4027455
С	5.8541810	5.5995766	10.2423698
С	6.0044944	3.8053863	8.7191224
С	7.2923010	3.1816564	6.6928354
С	9,6039500	-5.5013100	-9.9727900
C	9 6384656	1 6366633	-2 2104238
C	8 4431934	-3 8655725	-5 7954617
c	0.4451054	2 2100002	2.7234017
c	0.0055077	2.3199902	2.2002073
C a	9.63/3029	-4.0488912	-/.9616126
C	9.5712768	2.7597998	0.0009494
С	5.7292054	6.9968056	10.3465977
С	7.9304645	9.6320635	9.2883404
С	7.0610088	-7.7783620	-11.0947265
С	7.6243021	-1.0666563	-3.4537868
С	6.0244502	3.4714686	7.3524234
С	8.0626778	-6.7961831	-11.2014148
С	8.3246566	0.1538283	-3.4904657
-			

С	6.7854022	9.0489330	9.8611903
С	10.0220544	8.4833448	5.4370442
C	5 1416412	4 8802043	9 1935270
C	9 2791101	1 21 22 25 1	1 77//025
d		E 211601E	4 7040641
C a	5.3103010	-5.3110915	-4./940641
C	6.15/0928	-0.0339623	3.3091904
С	9.1382131	9.8906465	7.2790724
С	6.3115388	-4.3312631	-4.9030753
С	6.8573492	1.1865177	3.2714256
С	7.2336052	3.7353631	5.3472878
С	9,4353752	6.3670702	4,2835847
C	3 7360064	-8 0563533	-8 0305855
d	4 000001	0.00000000000000000000000000000000000	0.00000000
C	4.9062010	-2.0406065	-0.1022535
C	4.9292811	-8.2406009	-10.1980335
С	5.8167605	-2.1982488	-2.4482524
С	3.7682181	-6.6054759	-6.0200755
С	4.8424582	-1.5166473	2.0308384
С	7.8713622	10.1812646	7.9396594
С	9.1587939	9.5572677	5.9121920
С	9.3098715	7.7645453	4.3873667
C	8.6470727	-4.5933771	-10.5934681
C	8 4113400	2 2202422	-2 5829029
C	5 655/155	7 2040017	11 1265721
C a	5.0554155	-7.3940017	-11.1303731
C	6.1/52052	-1.0/0/460	-3.3004144
C	8.2611/26	5.5507007	4.0055833
С	8.7136655	-3.1726485	-8.5607671
С	8.3867030	3.4286984	-0.3588663
С	7.4868414	-2.9560408	-6.4156440
С	7.4383779	3.0105409	1.8935270
С	3.8735937	-7.7041859	-9.4382056
С	4.8869944	7.7254585	9.4059038
Ċ	4 7674147	-2 0752441	-1 5193432
C	4 1291135	-5 2442973	-5 6449343
C	1 2071201		2 5902670
d	7.09/1004	6 07102044	2.3902070
C	3.2020230	-0.0/10399	-/.3125249
C	7.6946611	-5.3935843	-11.3531091
С	4.2732426	-1.7275322	0.7592095
С	7.5985680	1.4126418	-3.3736270
С	5.5401402	8.9935397	9.1058025
С	5.1821837	4.2001275	6.4113934
С	4.3287229	5.5830632	8.2853354
С	6.1688395	-3.2431017	-5.8629590
С	6.3208749	2.3108626	2,5132896
C	5 9300398	4 3625784	5 1709173
C	8 2100420	-3 4496820	_9 9002225
d	7 7067572		1 6722710
C	7.7967573	3.2096958	-1.0/33/10
C	7.6201165	-2.6150455	-/.//45881
С	7.3009656	3.5588539	0.6055824
С	4.1992809	7.0312030	8.3934255
С	6.6691980	10.1277950	7.2102164
С	4.3488077	5.2372381	6.8695181
С	7.9129570	9.5018970	5.1565860
С	8.0066610	8.3941052	4.2141648
С	5.3000276	-6.0401761	-11.2827520
C	5.4737318	0.1435729	-3.1899189
C	7 0032705	6 1569186	3 8346616
C	6 2201120	-5 0000100	_11 2020/010
	0.3301129	-J.UZZ3431	>>294/1

С	6.1990640	1.4078412	-3.2269123
С	5.4829514	9.5230340	7.8036839
C	3 9915477	-4 1964623	-6 5751833
C	4 3777656	0 9150742	1 8603626
C	3 5048803	-6 3016517	_9 5901019
d	1 0202574	0.0164005	1 4051166
C	4.0393574	-0.0104905	-1.4051100
C	3.1388458	-5./8/11//	-8.2/66508
С	3.7374414	-0.6008815	0.0049045
С	5.0296004	-3.1793537	-6.6856286
С	5.1024686	2.1796186	1.8231549
С	5.8161806	5.5521202	4.4279254
С	6.6904580	9.7819260	5.7943177
С	6.8045930	-3.0646761	-9.9417238
С	6.3467325	3,2043484	-1.5206970
C	6 8735580	7 6044206	3 9424362
C	6 4396797	-2 5492627	-8 6276919
d		2.3472027	0.02/0919
C	0.0405052	5.4210252	-0.1110007
C	4.2055404	-5.4844323	-10.4969802
С	4.3882874	0.2737884	-2.2255278
С	3.4882418	-4.4732968	-7.9140456
С	4.1403209	7.5800415	7.0441391
С	3.7894696	0.6959217	0.5466306
С	4.2320154	6.4717198	6.1020767
С	5.8851552	-3.8375296	-10.6747506
С	5.5628717	2.3184866	-2.2832349
C	4.7710627	8.8039231	6.7548139
C	5 1674391	-2 8256805	-8 0929645
C	1 9606139	2.0230003	0.0929013
d	4.9000130	2.7 1 33709	4 002000
C	4.952//04	0.0203107	4.9026909
C	5.51/0939	8.9639507	5.5129168
C	5.6066054	7.8946353	4.6033368
С	4.5670398	-4.1230497	-10.1212091
С	4.4462054	1.6165264	-1.6637600
С	4.2149938	-3.6263419	-8.8524485
С	4.1505670	1.8247907	-0.3033458
Н	-20.2178456	-3.3929785	3.9993590
Н	-21.7697439	2.2355618	10.2486412
Н	-20.7638900	-8.5601897	-1.9247999
н	-19 9813436	2 2360913	10 1769725
C	-20 8846936	2 8588567	9 9882954
C	20.0010000	2.0500507	2 00/1002
	-20.3010430	-2.3194401	1 5010066
H	-19.8519499	-7.0715306	-1.5019966
Н	-19./26/6/0	-1./556093	4.5589/88
С	-20.7997124	-7.4505852	-1.9486624
Η	-21.4538582	-2.2233742	4.5643178
Η	-20.8567005	3.7189438	10.6899446
Η	-21.6265397	-7.1235995	-1.2780170
Н	-20.9302721	1.3409851	7.5247788
Н	-20.5939098	-3.7718387	1.5462718
Н	-20.9634896	-8.9196089	-4.3908134
С	-20.9415000	3.3185700	8.5557400
C	-20 6390249	-1 8160921	2 5819187
C	-20 9780400	2 4377600	7 4201000
C	-20.5700400	-2 6765202	1 / 5/0572
C	20.0000403	-2.0/03392	1.40400/3 2 2E70210
C	-20.90092//		-3.35/0312
C	-21.0532368	-/.8256116	-4.4/95/04
S	-21.1603441	0.7442222	4.7260452

S	-20.8121854	-4.4018051	-1.1950095
S	-21.7472200	-9.4627800	-7.2127900
С	-20.9793919	4.6463665	8.1561293
С	-20.7420844	-0.4612465	2.2153027
С	-20.9832367	3.0796253	6.1909776
С	-21.0867973	-5.6012442	-3.7288249
С	-20.7946076	-2.0369650	0.2159000
С	-21.1896142	-7.1897041	-5.7144742
С	-20.7421962	0.7401190	3.0185387
Н	-20.9755427	5.5410413	8.7944648
С	-20.9046334	2.4771689	4.8742916
С	-21.0283859	-4.3933492	-2.9393002
С	-20.8862087	-2.6478643	-1.0884891
Н	-21.5459379	-10.3699209	-9.4980782
С	-21.3838998	-9.4623635	-8.9006786
С	-21.2351084	-7.7870168	-7.0349723
S	-21.0291000	4.8244300	6.4370400
S	-20.8803432	-0.2989098	0.4700946
S	-21.2746703	-5.4539774	-5.4704458
С	-20.4665945	2.0468124	2.6090745
С	-20.5549058	3.0323105	3.6297516
С	-21.1317657	-3.0704860	-3.3832217
С	-20.9144600	-8.2321000	-9.3178200
С	-21.0585372	-2.0821980	-2.3677128
С	-20.8435600	-7.2561300	-8.2742700
Η	-20.1685395	2.2868640	1.5760847
Η	-20.6269333	-8.0164373	-10.3586861
Н	-21.2702414	-2.8146455	-4.4456461
С	-20.2548722	4.4862624	3.3816351
С	-20.3397298	-5.8547390	-8.4999769
н	-19.5657764	-5.5669260	-7.7533231
С	-21.1679299	-0.6084615	-2.6527206
Н	-19.4848893	4.8766241	4.0847357
Н	-21.1578599	5.1256900	3.5076564
Н	-20.2577660	-0.0529751	-2.3298203
Н	-22.0330213	-0.14/4653	-2.1240414
H	-21.1557628	-5.0998229	-8.4262215
H	-19.8934316	-5.7599247	-9.5125233
H	-19.8814141	4.6359961	2.3466792
Н	-21.3018960	-0.4296959	-3.7402951

References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.*, 1996, 77, 3865-3868.
- 2. A. Schäfer, H. Horn and R. Ahlrichs, J. Chem. Phys., 1992, 97, 2571-2577.
- 3. C. Hättig and F. Weigend, J. Chem. Phys., 2000, 113, 5154-5161.
- 4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 5. R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971, 54, 724-728.
- G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley and J. Mantzaris, J. Chem. Phys., 1988, 89, 2193-2218.
- 7. G. A. Petersson and M. A. Al-Laham, J. Chem. Phys., 1991, 94, 6081-6090.
- 8. M. Cossi, N. Rega, G. Scalmani and V. Barone, J. Comput. Chem., 2003, 24, 669-681.
- 9. E. Runge and E. K. U. Gross, *Phys. Rev. Lett.*, 1984, **52**, 997-1000.
- 10. M. Petersilka, U. J. Gossmann and E. K. U. Gross, *Phys. Rev. Lett.*, 1996, **76**, 1212-1215.
- 11. R. Improta, V. Barone, G. Scalmani and M. J. Frisch, J. Chem. Phys., 2006, 125, 054103.
- 12. S. Corni, R. Cammi, B. Mennucci and J. Tomasi, J. Chem. Phys., 2005, 123, 134512.
- 13. R. Cammi, S. Corni, B. Mennucci and J. Tomasi, J. Chem. Phys., 2005, 122, 104513.
- 14. M. Caricato, J. Chem. Phys., 2013, 139, 044116.