Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information for

Synthesis of Garlic Skin-Derived 3D Hierarchical Porous Carbon for High-Performance Supercapacitors

Qing Zhang,^a Kuihua Han,^{*a} Shijie Li,^a Ming Li,^a Jinxiao Li^a and Ke Ren^a

^aSchool of Energy and Power Engineering, Shandong University, Jinan 250061, China. E-mail: hankh@163.com

Figure S1 Schematic illustration for the preparation of garlic-skin-derived hierarchical porous carbon.

Figure S2 (a) SEM-EDS image of GHCs before acid washing. (b) SEM-EDS image of GHCs after acid washing.

Figure S3 XRD pattern of GHCs before acid washing.

Figure S4 SEM images of GHCs (a and b) before and (c) after acid washing.

Figure S5 TEM images of GHCs.

Figure S6 X-ray photoelectron spectroscopy (XPS) analysis of GHC-17.

Figure S7 Pore size distribution curve of (a) GHC-8, GHC-12, and GHC-17; (b) GHC-7, GHC-10, and GHC-12.

Figure S8 (a) Raman spectrum of (a) GHC-8, GHC-12, and GHC-17; (b) GHC-7, GHC-10, and GHC-12.

Figure S9 Nyquist plots of GHC-7, GHC-8, GHC-10, GHC-12, and GHC-17.

Figure S10 The electrical conductivity of the GHC based electrodes measured by four-point method (25 $^{\circ}$ C)

Figure S11 Electrochemical performance of the GHC-17 sample measured in a threeelectrode system using 6 mol·L⁻¹ KOH electrolyte. (a) CV curves of the GHC-17 at different scan rates from 5 to 100 mV·s⁻¹. (b) Charge-discharge curves of the GHC-17 at different current densities from 1 to 50 A·g⁻¹

Figure S12 Electrochemical performance of the GHC-7, GHC-8, GHC-10, GHC-12, GHC-17 samples measured in a three-electrode system using 6 mol L^{-1} KOH as the electrolyte. (a) CV curves at 20 mV s⁻¹; (b) The galvanostatic charge-discharge profiles at 1 A g⁻¹

	Factors				
Levels	Impregnatio n ratio	Activation temperature	Activation time	Carbonization temperature	Carbonization time
	Α	B (°C)	C (min)	D (°C)	E (min)
1	3.0:1	700	60	550	120
2	3.5:1	750	90	600	180
3	4.0:1	800	120	650	240
4	4.5:1	850	150	700	300

 Table S1 Factors and levels of the orthogonal design

 Table S2 Orthogonal experimental arrangements

	Range and level	8			
Experiment	Impregnation	Activation	Activation	Carbonization	Carbonization
No.	ratio	temperature B	time	temperature	time
	Α	(°C)	C (min)	D (°C)	E (min)
1	3.0:1	700	60	550	120
2	3.0:1	750	90	600	180
3	3.0:1	800	120	650	240
4	3.0:1	850	150	700	300
5	3.5:1	700	90	650	300
6	3.5:1	750	60	700	240
7	3.5:1	800	150	550	180
8	3.5:1	850	120	600	120
9	4.0:1	700	150	700	180
10	4.0:1	750	60	650	120
11	4.0:1	800	90	600	300
12	4.0:1	850	90	550	240
13	4.5:1	700	150	600	240
14	4.5:1	750	120	550	300
15	4.5:1	800	90	700	120
16	4.5:1	850	60	600	180

	Variables					Responses	
Experiment No.	А	В	C	D	E	Specific surface area (m ² /g)	Pore volume (cm ³ /g)
1	1	1	1	1	1	1468.33	0.759
2	1	2	2	2	2	1701.82	0.896
3	1	3	3	3	3	1714.46	0.922
4	1	4	4	4	4	1568.98	0.852
5	2	1	2	3	4	1725.09	0.938
6	2	2	1	4	3	1442.16	0.795
7	2	3	4	1	2	2268.66	1.162
8	2	4	3	2	1	2542.77	1.378
9	3	1	3	4	2	1561.91	0.838
10	3	2	4	3	1	2259.80	1.218
11	3	3	1	2	4	2077.21	1.165
12	3	4	2	1	3	2254.06	1.336
13	4	1	4	2	3	1886.07	1.063
14	4	2	3	1	4	1507.58	0.865
15	4	3	2	4	1	1161.90	0.664
16	4	4	1	3	2	1470.07	0.824
17	3	3	4	2	1	2818.22	1.327

 Table S3 Specific surface area and pore volume at different fabrication conditions

Indicators	Lovala	Factors				
Indicators	Levels	Α	В	С	D	Ε
	K _{1j}	1613.40	1660.35	1614.44	1874.66	1858.20
	\mathbf{K}_{2j}	1994.67	1727.84	1710.72	2051.97	1750.62
Specific	\mathbf{K}_{3j}	2038.25	2194.99	1831.68	1792.36	1824.19
surface	$\mathbf{K}_{4\mathbf{j}}$	1506.41	1958.97	1995.88	1433.74	1719.72
area S _{BET}	$\mathbf{R}_{\mathbf{j}}$	531.84	534.64	381.44	618.23	138.49
	The optimal	A a	B.	C.	D.	E.
	solution	113	D 3	04	\mathbf{D}_2	\mathbf{L}_{1}
	Lovols	Factors				
	Levels	А	В	С	D	Е
Pore	K _{1j}	0.86	0.90	0.89	1.03	1.03
volume	\mathbf{K}_{2j}	1.07	0.94	0.96	1.13	0.93
volume	\mathbf{K}_{3j}	1.14	1.20	1.00	0.98	1.00
	$\mathbf{K}_{4\mathbf{j}}$	0.85	1.10	1.07	0.79	0.96
	$\mathbf{R}_{\mathbf{j}}$	0.29	0.30	0.19	0.34	0.10
	The optimal	A	B	C	Da	E.
	solution	1 13		\mathbf{C}_4	\mathbf{D}_2	

 Table S4 Range analysis results

Experiment No.	Carbonization temperature D (°C)	Specific surface area (m²/g)	Pore volume (cm ³ /g)	Average pore diameter (nm)
1-1	550	81.44	0.079	3.812
1-2	600	178.16	0.143	3.315
1-3	650	266.48	0.216	2.947
1-4	700	420.61	0.251	2.759

Table S5 Characteristics of garlic skin-derived activated carbons without KOH activation (Samples are prepared with carbonization time for 2h)

Table S6 Peak assignment of C 1s and O 1s of the GHC-17

	Dinding onormy		Fraction	
Peak	binding energy	Assignment	of	Atom (%)
	(ev)		species	
C 1s	284.7	Sp ³ C=C	32.7	87.08
	285.6	Sp ² C-C	23.2	
	286.5	C-O	21.4	
	288.3	С-ООН	22.7	
O 1s	531.5	C=O Cabonyl O in COOR	25.0	12.92
	532.4	С-ОН, С-О-С	25.3	
	533.8	Non-carbonyl O in COOR	25.2	
	535.5	H ₂ O _(ads) /O _{2(ads)}	24.6	

Table S7 Pore parameters of GHC-7, GHC-8, GHC-10, GHC-12, GHC-17 (S_BET:total surface area; S_micro: micropore specific surface area; S_meso: mesoporous specificsurface area; V_T: total pore volume; V_micro: micropore volume; V_meso: mesoporousvolume; da: average pore diameter)

Sample	S _{BET} (m ² g ⁻¹)	S _{micro} (m ² g ⁻¹)	S _{meso} (m ² g ⁻¹)	V _{tot} (cm ³ g ⁻¹)	V _{micro} (cm ³ g ⁻¹)	V _{meso} (cm ³ g ⁻¹)	d _a (nm)	Capacitance (F g ⁻¹)
7	2268	1606	662	1.162	0.687	0.475	2.049	245
10	2260	1311	949	1.218	0.535	0.683	2.008	207
12	2254	851	1403	1.336	0.366	0.970	2.355	173
8	2543	1721	822	1.378	0.808	0.570	2.055	268
17	2818	2422	396	1.327	1.022	0.305	1.883	427

Table S8 The electrical conductivity of the GHC based electrodes measured by fourpoint method (25 °C)

	Electrical conductivity (S cm ⁻¹)				
	2 MPa	28 MPa			
GHC-7	1.19	9.74			
GHC-8	1.9	15.17			
GHC-10	1.74	12.22			
GHC-12	2.08	16.18			
GHC-17	3.25	22.05			

 Table S9 Summary of capacitive performance of carbon-based supercapacitor electrodes

Carbon material	$S_{BET}(m^2g^{-1})$	Gravimetric capacitance (F g ⁻¹)	Volumetric capacitance (F cm ⁻³)	Electrolyte & Test set-up	Ref.
-----------------	----------------------	--	--	------------------------------	------

GHC	2818	427 (0.5 A g ⁻¹)	162 (0.5 A g ⁻¹)	6 M KOH Two electrode	This work
Reed straw derived carbon	2387	355 (1 A g ⁻¹)		6 M KOH Two electrode	1
N-Doped carbon nanocages	1794	313 (1 A g ⁻¹)		1 M KOH Two electrode	2
Activated carbon fiber from sawdust	2395	242 (0.5 A g ⁻¹)		6 M KOH Two electrode	3
Seaweed derived carbon	3270	425 (0.1 A g ⁻¹)		1 M H ₂ SO ₄ Two electrode	4
Hierarchical porous graphene	1533	280 (1 A g ⁻¹)	224 (1 A g ⁻¹)	6 M KOH Two electrode	5
Polypyrrole-Derived activated carbon	3432	300 (1 mV s ⁻¹)		EMMBF ₄ Two electrode	6
Holey graphene frameworks	810	310 (1 A g ⁻¹)	220 (1 A g ⁻¹)	6 M KOH Two electrode	7
Graphene		200 (1 A g ⁻¹)	255 (0.1 A g ⁻¹)	1 M H ₂ SO ₄ Two electrode	8
Dead leaves derived carbons	1230	400 (0.5 A g ⁻¹)		1 M H ₂ SO ₄ Two electrode	9
Reduced graphene oxide	2400	310 (20 A g ⁻¹)		1 M KOH Two electrode	10
Graphene-based porous frameworks	350	226 (1 mV s ⁻¹)		1 M H ₂ SO ₄ Two electrode	11
Eggshell membranes derived carbon	221	297 (0.2 A g ⁻¹)		1 M KOH Two electrode	12
3D microporous graphene frameworks	194	202 (1 A g ⁻¹)		1 M Na ₂ SO ₄ Two electrode	13
Natural organic chemicals derived carbons	2967	230 (0.1 A g ⁻¹)	100 (0.1 A g ⁻¹)	1 M TEAFB₄/AN Two electrode	14
Activated graphene	3100	165 (1.4 A g ⁻¹)	60 (1.4 A g ⁻¹)	1 M	15

BMIMBF₄/AN

Two electrode

3D-printed graphene aerogel lattice	418	64 (10 A g ⁻¹)	2 (10 A g ⁻¹)	3 M KOH Two electrode	16
Carbon cryogel	1025	161 (10 A g ⁻¹)	80 (10 A g ⁻¹)	1 M H ₂ SO ₄ Two electrode	17
Nanoporous carbon	1472	220 (0.5 A g ⁻¹)		6 M H ₂ SO ₄ Two electrode	18
KOH activated C ₇₀ microstructure	1249	192 (5 A g ⁻¹)		1 M H ₂ SO ₄ Two electrode	19
Superactivated carbon	1600	246 (0.2 A g ⁻¹)		1 M H ₂ SO ₄ Two electrode	20
Graphene/carbon	492	250 (5 A g ⁻¹)		1 M Na ₂ SO ₄ Two electrode	21
Hierarchically porous carbons	2988	238 (0.2 A g ⁻¹)		6 M KOH ₄ Two electrode	22
Fungi derived porous carbon	80	196 (5 mV s ⁻¹))	180 (5 mV s ⁻¹))	6 M KOH ₄ Two electrode	23
Ordered mesoporous carbide- derived carbon	2250	170 (0.1 A g ⁻¹)	178 (0.1 A g ⁻¹)	1 M TEAFB4/AN Two electrode	24
Dry elm samara	1947	470 (1 A g-1)		6 M KOH Three electrode	25
Protein	805.7	390.4 (0.2 A g-1)		1 M H2SO4 Three electrode	26
Human hair	1306	340 (1 A g-1)		6 M KOH Three electrode	27
Fungus	1103	373 (0.5 A g-1)		6 M KOH Three electrode	28
Shiitake mushroom	2988	306 (1 A g-1)		6 M KOH Three electrode	29

References

- 1 C. Dai, J. Wan, J. Shao and F. Ma, *Mater. Lett.*, 2017, **193**, 279.
- 2 J. Zhao, H. Lai, Z. Lyu, Y. Jiang, K. Xie, X. Wang, Q. Wu, L. Yang, Z. Jin and Y. Ma, Adv. Mater., 2015, 27, 3541.
- 3 Y. Huang, Y. Liu, G. Zhao and J. Y. Chen, J. Mater. Sci., 2017, 52, 478.
- 4 D. Kang, Q. Liu, J. Gu, Y. Su, W. Zhang and D. Zhang, Acs Nano, 2015, 9, 11225.
- 5 J. Huang, J. Wang, C. Wang, H. Zhang, C. Lu and J. Wang, *Chem. Mater.*, 2015, **27**, 2017.
- 6 L. Wei, M. Sevilla, A. B. Fuertes, R. Mokaya and G. Yushin, Adv. Funct. Mater., 2012, 22, 827.
- 7 Y. Xu, Z. Lin, X. Zhong, X. Huang, N. O. Weiss, Y. Huang and X. Duan, Nat. Commun., 2014, 5, 4554.
- 8 X. Yang, C. Cheng, Y. Wang, L. Qiu and D. Li, *Science*, 2013, **341**, 534.
- 9 M. Biswal, A. Banerjee, M. Deo and S. Ogale, *Energy Environ. Sci.*, 2013, 6, 1249.
- 10 L. Z. Li, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, *Nano Lett.*, 2012, **12**, 1806.
- 11 Z. S. Wu, Y. Sun, Y. Z. Tan, S. Yang, X. Feng and K. Müllen, J. Am. Chem. Soc., 2012, 134, 19532.
- 12 Z. Li, L. Zhang, B. S. Amirkhiz, X. Tan, Z. Xu, H. Wang, B. C. Olsen, C. M. B. Holt and D. Mitlin, *Adv. Energy Mater.*, 2012, **2**, 431.
- 13 N. Jha, P. Ramesh, E. Bekyarova, M. E. Itkis and R. C. Haddon, Adv. Energy Mater., 2012, 2, 438.
- 14 L. Wei, M. Sevilla, A. B. Fuertes, R. Mokaya and G. Yushin, *Adv. Energy Mater.*, 2011, **1**, 356.
- 15 Z. Tan, G. Chen and Y. Zhu, *Science*, 2011, **332**, 1537.
- 16 C. Zhu, T. Liu, F. Qian, Y. J. Han, E. B. Duoss, J. D. Kuntz, C. M. Spadaccini, M. A. Worsley and Y. Li, *Nano Lett.*, 2016, **16**, 3448.
- 17 Z. Ling, C. Yu, X. Fan, S. Liu, J. Yang, M. Zhang, G. Wang, N. Xiao and J. Qiu, Nanotechnol., 2015, 26, 374003.
- 18 W. Tian, Q. Gao, Y. Tan, K. Yang, L. Zhu, C. Yang and H. Zhang, J. Mater. Chem. A, 2015, 3, 5656.
- 19 S. Zheng, H. Ju and X. Lu, Adv. Energy Mater., 2015, 5, 1500871.
- 20 G. A. Ferrero, M. Sevilla and A. B. Fuertes, *Carbon*, 2015, 88, 239.
- 21 L. Z, Y. B, S. Y, W. H and G. J, *Nanotechnology*, 2016, **27**, 025401.
- 22 P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu and Z. Lei, *Carbon*, 2015, **93**, 315.
- 23 H. Zhu, X. Wang, F. Yang and X. Yang, *Adv. Mater.*, 2011, **23**, 2745.
- 24 Y. Korenblit, M. Rose, E. Kockrick, L. Borchardt, A. Kvit, S. Kaskel and G. Yushin, Acs Nano, 2010, 4, 1337.
- 25 C. Chen, D. Yu, G. Zhao, B. Du, W. Tang, L. Sun, Y. Sun, F. Besenbacher and M. Yu, *Nano Energy*, 2016, **27**, 377.
- 26 Z. Li, Z. Xu, X. Tan, H. Wang, C. M. B. Holt, T. Stephenson, B. C. Olsen and D. Mitlin, *Energy Environ. Sci.*, 2013, **6**, 871.
- 27 J. B. Varley, V. Viswanathan, J. K. Norskov and A. C. Luntz, *Energy Environ. Sci.*, 2014, 7, 720.
- 28 C. Long, X. Chen, L. Jiang, L. Zhi and Z. Fan, *Nano Energy*, 2015, **12**, 141.
- 29 P. Cheng, S. Gao, P. Zang, X. Yang, Y. Bai, H. Xu, Z. Liu and Z. Lei, *Carbon*, 2015, **93**, 315.