Supporting Information :

Atomic layer doping of Mn magnetic impurities from surface chains at a Ge/Si hetero-interface

Koichi Murata,^{*,†,‡,@} Christopher Kirkham,^{¶,§,@} Satoshi Tsubomatsu,^{†,‡} Takashi

Kanazawa,^{†,‡} Kiyofumi Nitta,^{||} Yasuko Terada,^{||} Tomoya Uruga,^{||} Koh-ichi

Nittoh,[†] David R. Bowler,^{¶,⊥} and Kazushi Miki^{*,†,‡,#}

†National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
‡Faculty of Pure and Applied Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8573, Japan

¶London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK

§Center for Computational Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan ||JASRI/ SPring-8, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan

⊥International Centre for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS) 1-1 Namiki, Tsukuba, 305-0044, Japan

#Department of Electrical Materials and Engineering, University of Hyogo, Shosya 2167, Himeji, Hyogo, 671-2280, Japan @Contributed equally to this work

E-mail: m-koichi@criepi.denken.or.jp; miki@eng.u-hyogo.ac.jp

Absorption spectra of Mn δ -doped layer

XAFS measurements were performed at the Mn K-edge in N₂ at the beamline BL37XU, in SPring-8. The X-rays from the undulator source were monochromatized by a Si(111) double-crystal monochromator. The incident X-ray intensity was measured by an ionization chamber. The XAFS spectra were measured in the wavelength dispersive fluorescence mode using a 19-element Ge solid state detector. The sample was mounted on a swivel stage to set the incident angle between the X-rays and the sample surface at 4°. The measurement direction was defined by two angles, ϕ and θ , between the electric field vector \boldsymbol{E} and the Mn atomic chain. ϕ is the in-plane angle, such that $\phi = 90^{\circ}$ when \boldsymbol{E} is perpendicular to the Mn chain, and 0° when parallel. θ is the out-of plane is angle, such that $\theta = 0^{\circ}$ when \boldsymbol{E} is perpendicular to the sample normal. The XAFS spectra were analyzed using the Demeter software.¹ The obtained X-ray absorption near-edge (XANES) spectra are shown in Fig. 1 and are similar to previous results.^{2,3} There is a clear difference between the Si and Ge capped samples in the vertical direction.

Fitting with one-shell Mn-Ge model

Curve fitting with a one-shell model for Mn-Si and Mn-Ge was applied to the Ge capped sample. Theoretical scattering phase shifts and amplitudes were calculated using FEFF8.⁴ The obtained distances (R), effective coordination numbers (CN^{*}), Debye-Waller factors (σ^2), relative error between the fit and data (R-factor) and an energy shift parameter ΔE , used to align the theoretical spectrum to the measured spectrum, are listed in Table 1. Since many of the parameters show large deviations, these fitting results are not reliable.

Reference : powder samples

As a reference, a Mn crystal and several Mn silicide and germanide powders diluted in BN powder were characterized by XAFS measurement. The X-ray absorption fine structure and

Figure 1: Normalized absorption spectra of Mn δ -doped samples capped by Si and Ge. Spectra were obtained in three different directions, out-of-plane ($\phi = 0^{\circ}$, $\theta = 0^{\circ}$), perpendicular ($\phi = 90^{\circ}$, $\theta = 90^{\circ}$) and parallel ($\phi = 0^{\circ}$, $\theta = 90^{\circ}$).

Fourier transforms at k = 2 - 12 Å⁻¹ of the Mn K-edge EXAFS spectra of these samples are shown in Fig. 2 and Fig. 3, respectively.

Table 1: Structural parameters for the Mn-Ge nearest neighbor shell obtained from curve fitting analysis of the Mn K-edge EXAFS spectra of a Ge capped Mn δ -doped layer for 2 < k < 10 Å⁻¹. Mn-Si oscillation is dominant and CN^* is dependent on the measurement geometry, which is based on structural anisotropy. ΔE (eV) and R-factor represent the energy shift to align theoretical spectrum to the measured spectrum and the relative error between the fit and data.

Samples	R (Å)	CN^*	σ^2 (Å ²)	$\Delta E \; (eV)$	R-factor
Mn-Ge (out-of-plane)	2.3 ± 0.1	-3 ± 6	0.01 ± 0.02	0	0.02187
Mn-Ge (perpendicular)	2.3 ± 0.2	-5 ± 11	0.01 ± 0.02	-1.7	0.03285
Mn-Ge (parallel)	2.4 ± 0.2	5 ± 15	0.02 ± 0.03	-19	0.03261

Figure 2: Normalized absorption spectra of Manganese (a) Silicide and (b) Germanide

References

- (1) Ravel, B.; Newville, M. Journal of Synchrotron Radiation 2005, 12, 537–541.
- (2) Wolska, A.; Lawniczak-Jablonska, K.; Klepka, M.; Walczak, M. S.; Misiuk, A. Phys. Rev. B 2007, 75, 113201.
- (3) Ye, J.; Jiang, Y.; Liu, Q.; Yao, T.; Pan, Z.; Oyanagi, H.; Sun, Z.; Yan, W.; Wei, S. J. Appl. Phys. 2009, 106, 103517.
- (4) Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Phys. Rev. B 1998, 58, 7565.

Figure 3: Fourier transform at k = 2 - 12 Å⁻¹ of Manganese (a) Silicide and (b) Germanide