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Here we summarize the methods used to calculate the coupled polar-elastic energies of the

ferroelectric/dielectric superlattice nanostructure and describe the details of the structural analysis
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using x-ray nanodiffraction.

1. Methods

1.1. System energies

The total free energy, Ftotal, of a ferroelectric (FE) PbTiO3 (PTO) structure can be written as a

linear combination of the energies1,2 from different contributions as

Ftotal =

∫
V

f d3x =

∫
V

[fbulk + felectrostatic + fwall + felastic + fcoupled]d3x, (1)

with an integration over the computational domain V . Spatial variables are defined in Cartesian

coordinates as x = 〈x1, x2, x3〉. The term
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corresponds to the bulk free energy density depending on the spatial varying polarization field

P(x) = 〈P1(x), P2(x), P3(x)〉. The minima of fbulk determine the preferred directions and magni-

tudes of P in the unit cell at a given temperature T below TC . The energetic approach includes

felectrostatic = −P · ∇Φ, where Φ(x) is the spatially dependent electrostatic potential. This contribu-

tion to the total energy represents the interaction of the FE polarization with internal and external

electric fields. The term fwall expresses the energy contributions arising from local gradients as the
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polarization exchange coupling between domains across the domain wall. For the given material

(PTO),
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The problem is coupled to elasticity through two energetic terms. The linear elastic free energy

felastic = 1
2
Cijkl(εij − ε0ij)(εkl − ε0ij) accounts for linear elastic strain contributions to the total

energy, with Cijkl being the elastic stiffness tensor, and ε0ij the eigenstrain, which in our case

is the stress-free strain that arises from the polarization. The elastic strain tensor is represented

by εij = 1
2

(∂ui/∂xj + ∂uj/∂xi) with u(r) being the displacement vector field. The strain is

then coupled to the polarization with the fcoupled term, which is expressed linear in the strain and

quadratic in the polarization,

fcoupled ≡
1

2
qijklεijPkPl, (4)

where qijkl = 2QijmnCmnkl is the electrostrictive tensor. For the above expressions, the Einstein

summation convention is assumed for repeated indices. Note that some works in the literature (for

example 1 and 2) combine felastic and fcoupled into one term. Here, we have chosen to separate

them because the result of the variational differentiation (with respect to P ) in the time-dependent

Landau-Ginzburg-Devonshire equations, to be discussed in the next few sections, will only give
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nonzero results for terms that explicitly contain P .

1.2. Materials parameters

For the bulk free energy that describes the energetics of the phase transition, only sixth order

expansions are used, which is sufficient to reproduce the behavior of PTO within the temperature

range considered here.3 The coefficients for the bulk free energy contributions are listed in Table 1.

We also set G110 = 1.73, G11/G110 = 0.6, G12/G110 = 0.0, and G44/G110 = G′44/G110 = 0.3 in

units of 10−10C−2m4N.1,2

We assume an isotropic (and linear) dielectric medium for the SrTiO3 (STO) substrate and

vacuum region. The STO substrate is also treated as elastic and coherently connected to the

ferroelectric region. The elastic stiffness tensor parameters listed in Table 2 are presented in Voight

notation.4 For the STO substrate, the elastic constants were averaged as C11,= C33 = 2µ + λ,

C12 = C13 = λ = 99.7 GPa, and C44 = C66 = µ = 109.6 GPa,5,6 which is a reasonable

experimentally relevant assumption, since the substrate elastic anisotropy is low.

Table 1: Ferroelectric material parameters used in this work for PbTiO3 at room temperature,
T = 293 K. Elastic stiffness and electrostrictive tensor coefficients are given in Voight notation.4

Sixth-order expansions of the bulk free energy are used for both materials. All coefficients are given
in SI units.

PbTiO3 Ref.
α1 −7.1× 107 7
α11 −7.3× 107 -
α12 7.5× 108 -
α111 2.6× 108 -
α112 6.1× 108 -
α123 −3.7× 109 -
εb 10
Q11 0.089 1
Q12 -0.026 -
Q33 0.034 -
C11 281 5, 6
C12 116 -
C33 97 -
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Table 2: Linear dielectric material parameters used in this work for SrTiO3 at room temperature,
T = 293 K. Medium dielectric constants are assumed to be isotropic and are given in units of the
relative permittivity. Elastic stiffness tensor coefficients are given in Voight notation4 in units of
GPa.

SrTiO3 vacuum Ref
C11 319 - 5, 6
C12 100 - -
C44 110 - -
εm/ε0 300 1 8

1.3. Relaxational approach

FERRET 9 is an open-source package for modeling ferroelectric nanostructures based on the multi-

physics finite element framework MOOSE.10 The evolution of the polarization field, P , in the

ferroelectric layer is described by the time-dependent Landau-Ginzburg-Devonshire (TDLGD)

equation,

− γ ∂P
∂t

=
δ

δP

∫
V

f (P ) d3x, (5)

where γ is a time-scaling parameter related to domain-wall mobility.11 The variable γ is set to

unity in this investigation and, therefore, the TDLGD equation is evolved in an arbitrary scaled

time. This assumption is due to the fact that in real FE materials and structures, elastic strain

usually relaxes much faster than the polarization,12 we assume that the local displacement field u(x)

instantaneously adjusts to the current state of the polarization field P . This results in the following

mechanical equilibrium condition for the system that must be satisfied at every time step of the

evolution of P :

∂

∂xj
[Cijkl (εkl −QijmnPmPn)] = 0, (6)

where the second term is the eigenstrain that arises from the coupling of the polarization to the

elastic strain.1 Furthermore, the evolution of P is also coupled with that of the local (internal)
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electrostatic potential Φ by the Poisson equation:

∇ · (εb∇Φ) = −ρb. (7)

Here, ρb is bound volume charge equal to ∇ · P . Solving Eq. 7 accounts for the long-range

Coulombic interactions within the system, including the potential emergence of the so-called

depolarization field that originates from the presence of unscreened charges on the polar surface.

Parameter εb, sometimes called the background dielectric constant, represents contributions from

core electrons to the dielectric response of the ferroelectric13,14 that can moderately screen the

polarization field. We choose εb/ε0 = 10 for PTO,14 i.e., we use values that are close to those of the

electronic contribution ε∞ to the total dielectric permittivity.13 Two things should be noted: varying

this parameter does not seem to affect the results presented in this work and the electrostatic energy

contribution tends to be three orders lower than the other energies at all times during the evolution in

this particular analysis. The state of the dielectric substrate in contact with the FE layer is governed

by a different set of equations. STO is assumed to be a linear dielectric, with an isotropic dielectric

permittivity εm. The following equation must be satisfied for the electrostatic potential within the

substrate:

∇ (εm · ∇Φ) = 0, (8)

complemented by the stress divergence equation:

∂σij
∂xj

= 0. (9)

The same governing equations exist in the vacuum region, except that u is nonexistent. The

electrostatic potential boundary condition, Φ→ 0, is enforced on the boundary planes of the vacuum

(which are assumed to be far away from the layer). Consistency checks were done to make sure that,

as a function of the size of the layer, the internal (fringing) electrostatic potential did in fact vanish

6



at the boundaries of the computational domain. Larger external vacuum domains were needed to

ensure fringing fields from larger layers vanished. The elastic displacement field is required to

vanish sufficiently far from the substrate/nanostructure interface (at about 25 nm depth). Variation

of this depth does not appreciably affect the simulation energetics. Additionally, periodic boundary

conditions are chosen along the x-axis to allow for computationally efficiency in simulating a very

long patterned structure. Here, we set all variables P ,u, and Φ nodally equivalent on the two

boundary planes whose normals are parallel to ±y-axis directions.

Our approach implemented in FERRET 9 allows for solving coupled Eqs. 5 through 6 self-

consistently for the displacement vector field u(x), polarization vector field P (x, t), and electro-

static potential scalar field Φ(x). These equations are first separated into their respective subdomains,

and then cast into the weak-form suitable for Galerkin’s finite element method. A fully implicit

time integration is implemented in a Newton-Raphson scheme. The iterative Generalized Minimal

Residual15 algorithm is used to solve the block (jacobi) diagonal preconditioned linear system. The

full solve utilizes convergence to within 1× 10−7 relative nonlinear residual tolerance at every time

step.

Since Eq. 5 is a partial differential equation that depends on time, an initial condition for

evolving the P field must be chosen. For this particular problem – to focus in on and understand

the specific experimental results obtained – we adopt an initial condition that biases the polar field

to produce aligned domain structures either aligned parallel or perpendicular to the milled boundary

as the lowest total energy states found through evolution. After the initial condition is set, the

temperature is then immediately set below TC and the TDLGD Eq. 5 is evolved (by solving 7 and 6

at each time step) until a (local) energy minimum has been found. The simulation exit criterion is

achieved when the difference in the magnitude of the total energy is below 0.1% during the two

consecutive time steps.
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1.4. Structure and materials

The computational domain of the problem is split into three volumes; a ferroelectric PTO volume

atop a linear dielectric STO substrate surrounded by two vacuum blocks to model the empty space

due to focused ion beam milling. The ferroelectric domain is meant to mimic the superlattice

structure for reasons described in the main text. We assume a coherent interface between the

ferroelectric and substrate materials blocks. We then discretize the total volume into a finite element

model and the structure is meshed with hexahedral elements with CUBIT.16 The resolution of the

mesh is always such that there are 2-3 elements across the domain wall.

2. X-ray nanobeam analysis

2.1. Azimuthal angle δ as a function of ∆Θ

The domain diffuse scattering intensity forms a ring of intensity in a qx-qy-plane of reciprocal space

with a radius of 2π/Λ. Here Λ is the real-space domain period. Fig. S1 shows sections of reciprocal

space in the qx-qy and qx-qz planes passing through the superlattice Bragg reflection. When the

incident beam meets the superlattice Bragg condition the Ewald sphere intersects the ring of domain

diffuse scattering intensity as shown in Fig. S1 (a). Other sections of the ring of diffuse scattering

intensity can obtained by changing the x-ray incident angle by ∆θ as shown in Fig. S1 (b). The

magnitude of the reciprocal-space displacement ∆x of the Ewald sphere along the qx axis for an

incident beam is:

∆x = r cos θ2 − r cos θ1.

The angles θ1 and θ2 are defined in Fig. S1(d). The azimuthal angle δ can be determined using:

θ1 = θB + ∆θ,

θ2 = sin−1
(z2
r

)
= sin−1

(
z0 − z1
r

)
= sin−1 (2 sin θB − sin θ1) ,
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and

δ = sin−1
(

∆x

2π/Λ

)
=

Λ

λ

(
cos
(
sin−1 (2 sin θB − sin θ1)− cos Θ1

))
.

Note by using the following trigonometric identity, cos sin−1(α) =
√

1− α2, the expression for

δ can be simplified to

δ(∆θ) =
Λ

λ

(√
1− (2 sin θB − sin (θB + ∆θ))2 − cos (θB + ∆θ)

)
,

with λ being the wavelength of the x-ray.

Figure S1: Reciprocal space maps with the Ewald sphere (purple) and the domain intensity (yellow).
The superlattice Bragg peak is not shown. The corresponding x-ray incident angles are (a, c) θB
and (b, d) θB + ∆θ.
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2.2. Strain measurement

2.2.1. Strain estimation using curvature

The magnitude of the strain resulting from the curvature of the nanostructure is in general difficult

to determine because strain depends on the overall shape in addition to the curvature. We have

obtained an order-of-magnitude estimate by assuming that the interface between the thin film and

substrate is a neutral plane. The magnitude of the in-plane strain increases throughout the thickness

of the film due to its curvature.

The curvature was measured by analyzing x-ray diffraction patterns for a series of locations

across the width of the nanostructure. Under the diffraction conditions illustrated in the text, the

curvature of the nanostructure across its width induces a shift in the diffracted intensity on the

detector along a the direction perpendicular to the x-ray beam footprint by an angle ∆χ. The local

tilt of the planes ∆α is calculated from the angular shift of diffraction patterns using the relationship

∆α= 1
2sin(θB)

∆χ. The curvature is obtained using the numerical derivative of the orientation of the

planes as a function of position. The curvature in the 800-nm-wide nanostructure discussed in the

main text is 5880 m-1, corresponding to a radius of curvature of 0.17 mm. The average in-plane

structural strain is defined as t/2R, where t is the film thickness and R is the radius of curvature.

The in-plane strain for this curvature is 0.03%, corresponding to an out-of-plane strain of -0.01%.

2.2.2. Out-of-plane strain measurement using x-ray nanodiffraction

The (002) Bragg reflection of the PTO/STO superlattice appears on the detector under diffraction

conditions in which the (002) planes meet the Bragg condition. The nanodiffraction experiment

employs a highly convergent focused x-ray beam. The planes thus meet the Bragg condition for all

angles within the range spanned by the convergence angle of the focused x-ray nanobeam.

Fig. S2 shows a set of diffraction patterns acquired along the length of a 500-nm-wide nanos-

tructure, following the path indicated by the green line. The vertical axis of the diffraction patterns

corresponds to the conventional 2θ scattering angle. All of the patterns were acquired at a nominal
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x-ray incident angle 0.03 deg less than the Bragg angle in the unpatterned regions. The diffraction

patterns numbered 1, 2, 3, 4, 9, 10, 11, and 12 in Fig. S2 were acquired outside of the nanostructure.

Diffraction patterns numbered 5, 6, 7, and 8 were acquired within the nanostructure.

The diffracted intensity associated with the PTO/STO 002 Bragg reflection appears as a region

of high intensity the detector. The 2θ angles of the PTO/STO 002 Bragg reflection were calculated

in each image using the centroid of the intensity distribution along the 2θ angular axis. The Bragg

reflection intensities in the diffraction patterns acquired within the nanostructure appear at a value of

2θ that is 0.017 deg larger than in the diffraction patterns acquired outside of the nanostructure. This

angular difference (∆) arises because the out-of-plane lattice parameter within the nanostructure

is smaller than in the unpatterned region. The angular difference can be used to calculate the

out-of-plane strain (εz) using εz = -cot(ΘB) ∆. The resulting strain is εz = -0.08 %. Note that this is

the same order of magnitude as the value obtained using the curvature.

Figure S2: Diffraction patterns acquired along the length of a 500-nm-width nanostructure along
the path indicated by the green dotted line
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