Supplementary Information

Highly stable SnO₂-Fe₂O₃-C hollow spheres for reversible lithium storage

with extremely long cycle life

Jonghyun Choi, Won-Sik Kim and Seong-Hyeon Hong*

Department of Materials Science and Engineering and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Republic of Korea

Fig. S1 SEM images of (a) SnO_2 commercial nano-powder, (b) SnO_2 solid spheres, (c) Fe_2O_3 solid spheres, (d) SnO_2 - Fe_2O_3 -C solid spheres and TEM images of (e)-(g) SnO_2 - Fe_2O_3 -C solid spheres.

Fig. S2 SEM images: (a),(b) SiO₂ spheres; (c),(d) SnO₂ hollow spheres; (e),(f) SnO₂-Fe₂O₃ hollow spheres. TEM images of (g),(h) SnO₂ hollow spheres; (i) SnO₂-Fe₂O₃ hollow spheres.

Fig. S3 Full survey scan and O1s and C1s XPS spectra of SnO₂-Fe₂O₃-C hollow spheres.

Fig. S4 STEM images and EDS line profile of SnO₂-Fe₂O₃-C hollow spheres.

Fig. S5 EDS analysis and TGA for the SnO₂-Fe₂O₃-C hollow spheres.

Fig. S6 Cycling stability test of SnO₂-Fe₂O₃-C hollow spheres at 1,000 mA g⁻¹.

Fig. S7 (a) SEM image, (b) TEM image, (c) STEM image, and EDS mapping of (d) Sn and (e) Fe of SnO₂-Fe₂O₃ hollow sphere electrode after 100 cycles.

Fig. S8 (a) Voltage profiles and (b) cycle performance of $\text{LiNi}_{0.6}\text{Mn}_{0.2}\text{Co}_{0.2}\text{O}_2$ (NCM) cathode half-cell between 3.0 and 4.3 V at the current density of 150 mA g⁻¹, (c) voltage profiles and (d) cycle performance of $\text{SnO}_2\text{-Fe}_2\text{O}_3\text{-C}$ hollow sphere/NCM full cell between 1.8 and 4.2 V at the current density of 100 mA g⁻¹ based on the weight of $\text{SnO}_2\text{-Fe}_2\text{O}_3\text{-C}$ anode.