Electronic Supplementary Information

An Extremely Low Pt Loading Cathode for a Highly Efficient Proton Exchange Membrane Water Electrolyzer

Hoyoung Kim,^a Seunghoe Choe,^{b,c} Hyanjoo Park,^a Jong Hyun Jang,^b Sang Hyun Ahn^{*d} and Soo-Kil Kim^{**a}

^aSchool of Integrative Engineering, Chung-Ang University,
84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
^bFuel Cell Research Center, Korea Institute of Science and Technology (KIST),
14-gil 5 Hwarangno, Seongbuk-gu, Seoul 02792, Republic of Korea
^cElectrochemistry Department, Korea Institute of Materials Science (KIMS),
797 Changwondaero, Seongsangu, Changwon, Gyeongnam 51508, Republic of Korea.
^dSchool of Chemical Engineering and Material Science, Chung-Ang University,
84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea

Corresponding authors

*Tel: +82-2-820-5287; Fax: +82-2-824-3495; E-mail: <u>shahn@cau.ac.kr</u> **Tel: +82-2-820-5770; Fax: +82-2-814-2651; E-mail: <u>sookilkim@cau.ac.kr</u>

Supplemental text

Experimental details

Pt self-terminated electrodeposition on carbon paper

A deposition solution for Pt self-terminated electrodeposition (SED) consisted of 3 mM K₂PtCl₄ and 0.5 M NaCl.⁴¹ The solution pH was adjusted to 4.0 using dilute HCl.⁴¹ A laboratory fabricated Teflon cell was used to configure a conventional three electrodes cell, containing carbon paper (CP, TGP-H-090, Toray) as working electrodes, Pt wire as counter electrodes, and saturated calomel electrodes (SCE) for reference electrodes. From the linear sweep voltammetry (LSV) analysis, the pulse potential was pre-determined for three consecutive ones with different times, e.g., 0.4 V_{SCE} at 2 s, -0.9 V_{SCE} at 10 s, and 0.4 V_{SCE} at 3 s, which were controlled using a potentiostat (Autolab PGSTAT302F, Metrohm). Each Pt deposited CP was termed Pt#/CP where # was the number of deposition pulses.

Characterization

Surface morphology of electrodeposited Pt on carbon paper was imaged using field emission scanning electron microscope (FESEM, Sigma, Carl Zeiss). Several samples were analyzed elementally using energy dispersive X-ray spectroscopy (EDS, Thermo NORAN System 7) and X-ray photoelectron spectroscopy (XPS, Kratos, AXIS-His). For crystal structure investigation, X-ray diffraction (XRD, New D-8 Advance, Bruker-AXS) was used at a rate of 5°/min. In addition, the Pt loading mass after deposition was measured using inductively coupled plasma mass spectroscopy (ICPMS, Perkin-Elmer, ELAN 6100, Nexion 350D).

Electrochemical measurement

The hydrogen evolution reaction (HER) activity measurement for Pt electrodeposited with varying deposition pulse numbers was conducted in N₂-purged 0.5 M H₂SO₄ using cyclic voltammetry (CV) in the potential range of -0.2 to -0.8 V_{SCE} at a scan rate of 50 mV/s. The recorded potential was converted to reversible hydrogen electrode (RHE). A solution resistance of 2.3 Ω between working and reference electrode was measured using electrochemical impedance spectroscopy (EIS, Wuhan CorrTest Instrument Co. Ltd.) at an amplitude of 10 mV in the range of 10⁵ to 10⁻² Hz and used in iR-correction. After correcting the potential, the curves were fit with a Tafel line in the low current density region to determine the Tafel slope and exchange current density. These described experiments proceeded at room temperature and atmospheric pressure.

Single cell operation

For PEMWE single cell operation, the membrane electrode assembly (MEA) was prepared by sandwiching a Nafion membrane (212, Dupont Co.) between the anode and cathode. The cathode was prepared using Pt SED on CP as described previously, while the anode was fabricated from IrO₂ electrodeposition on carbon paper (IrO₂ loading mass: 0.10 mg/cm²).³ As a reference, the Pt/C/CP cathode was prepared by spraying catalyst ink, Pt/C (46.5 wt%, TKK), Nafion ionomer (5 wt%, Dupont Co.), isopropanol, and deionized water at a weight ratio of 7:60:168:42. The Pt loading and Nafion content were controlled to 0.4 mg/cm² and 30 wt%, respectively. The active area of a single cell was fixed at 1.21 cm². As a reactant, deionized water was preheated at 50°C and injected into the anode part of a single cell at a rate of 15 mL/min. The single cell test was carried out at 90°C using the potentiostatic method in the cell potential range between 1.35 and 2.00 V_{cell} at an interval of 0.05 V. At each potential, the current was stabilized for 1 min and then the current-potential graph was obtained to represent the performance of the PEMWE single cell.

Overpotential analysis

For overpotential analysis of a single cell, the EIS was conducted at 1.6 V_{cell} and 90°C in a frequency range of 50 MHz to 10 mHz. The obtained ohmic resistance (R_{ohm}) was used to calculate the ohmic overpotential ($\eta_{ohm} = iR_{ohm}$) and iR-corrected cell voltage ($E_{iR-free} = V - iR_{ohm}$). After fitting to determine the Tafel slope and exchange current density, the kinetic overpotential (η_{kin}) was derived from the Tafel equation. The mass transfer overpotential (η_{mass}) was assumed to be the remaining source of the voltage loss, and obtained using the following equation: $\eta_{mass} = E - E_0$

 $-\eta_{kin} - \eta_{kohm}$.

Electrode	Number of deposition pulse	Mass of Pt (µg/cm²)	Overpotential @ -10 mA cm ⁻² (mV)	Tafel slope (mV/dec)	Exchange current density (mA/cm²)	Mass activity* (A/mg _{pt})
Pt1/CP	1	N/A	305	78	0.014	N/A
Pt3/CP	3	N/A	230	52	0.056	N/A
Pt5/CP	5	N/A	209	48	0.081	N/A
Pt10/CP	10	0.03	160	47	0.145	-45.6
Pt20/CP	20	0.15	122	47	0.191	-11.4
Pt100/CP	100	1.55	72	41	0.240	-2.43
Pt300/CP	300	21	45	36	0.562	-0.77
Pt500/CP	500	271	42	36	0.646	-0.07

Table S1. Summary of cathodes and their catalytic activity

*Mass activity at -0.05 $\mathrm{V}_{\mathrm{RHE}}$

References	Cathode (mg/cm ²)	Membrane	Anode (mg/cm²)	Т (°С)	j @ 1.6 V _{cell} (A/cm ²)	j @ 1.9 V _{cell} (A/cm ²)
This study	Pt10/CP (<0.00003)	Nafion 212	IrO ₂ (0.1)	90		0.11
This study	Pt20/CP (0.00015)	Nafion 212	IrO ₂ (0.1)	90	0.005	0.38
This study	Pt100/CP (0.00155)	Nafion 212	IrO ₂ (0.1)	90	0.42	1.81
This study	Pt300/CP (0.021)	Nafion 212	IrO ₂ (0.1)	90	0.58	2.55
This study	Pt500/CP (0.271)	Nafion 212	IrO ₂ (0.1)	90	0.60	2.55
[3]	Pt/C (0.4)	Nafion 112	IrO ₂ (0.1)	90	1.01	2.24
[4]	Pt/C (0.25)	Nafion115CS	IrO ₂ (0.71)	80	0.55	1.85
[5]	Pt (0.5)	Nafion 117	IrO _x (0.5)	80	0.76	-
[6]	Pt/C (1.0)	Nation 212	IrO ₂ /NPG (0.086)	80	0.92	-
[7]	Pt/C (0.4)	Nation 212	Ir ND/ATO (1.0)	80	0.69	1.92
[8]	Pt/C (0.4)	Nafion212CS	Ir _{0.7} Ru _{0.3} O ₂ (1.0)	80	0.56	-
[9]	Pt/C (0.5)	Nafion 1035	IrO ₂ (1.5)	80	0.68	1.74
[10]	Pt/C (1.0)	Nation 212	IrO _x -Ir (1.0)	80	0.71	-
[11]	Pt/C (0.5)	Nafion 115	IrOx (1.5)	90	0.80	2.80
[12]	Pt/C (0.5)	Nafion 115	IrO ₂ (1.6)	80	0.40	1.68
[13]	Pt/C (0.4)	Nafion 115	IrO ₂ (2.0)	80	0.75	-
[14]	Pt (1.0)	Nafion 112	Ir (1.5)	80	0.60	2.11
[15]	Pt/C (0.5)	Nafion 112	IrO ₂ (3.0)	80	0.87	-
[16]	Pt/C (0.5)	Nafion 212	IrO ₂ (3.0)	80	1.32	-
[17]	Pt (3.0)	Nafion 115	IrRuO _x (3.0)	80	1.36	-

Table S2. Summary of PEMWE operating conditions and performance described in the literature

Fig. S1 Current transient for a Pt SED on CP using the first 20 deposition pulses.

Fig. S2 Elemental mapping of (a) Bare CP, (b) Pt1/CP and (c) Pt5/CP.

Fig. S3 XRD patterns for bare CP and Pt#/CP.