Electronic Supplementary Information

Experimental section

Materials: Nickel foam (NF) was provided by Hongshan District, Wuhan Instrument Surgical Instruments business, and treated in hydrochloric acid (HCl) to serve as substrate for active materials. $Co(NO_3)_2 \cdot 6H_2O$, $CO(NH_2)_2$ and NH_4F were purchased from Aladdin Ltd. in Shanghai. Potassium bicarbonate (KHCO₃) was purchased by Chengdu Kelon Chemical Reagent Factory. $RuCl_3 \cdot 3H_2O$ and Nafion (5 wt%) were bought from Sigma-Aldrich Chemical Reagent Co., Ltd. All chemical regents were used as received without further purification. The water used throughout all experiments was purified through a Millipore system.

Preparation of CoCH/NF: CoCH/NF was prepared as follows. A piece of NF was first treated with concentrated HCl, ethanol and deionized water by sonication sequentially to obtain a clean surface before use. To prepare CoCHH/NF, $Co(NO_3)_2 \cdot 6H_2O$ (0.29 g), urea (0.3 g) and NH₄F (0.07 g) were dissolved in 25 mL water under vigorous stirring for 5 min. Then the solution was transferred to a 50 mL Teflon-lined stainless-steel autoclave and a piece of NF was immersed into the solution. The autoclave was sealed and maintained at 120 °C for 5 h in an electric oven to obtain CoCHH/NF. CoCH/NF was obtained via electrochemical conversion of CoCHH/NF for 2 h at 1.0 V in 1.0 M K-Ci (pH 8.3) at room temperature (25 °C), using CoCHH/NF, saturated calomel electrode (SCE) and graphite plate as the working electrode, reference electrode and counter electrode, respectively. The CoCH loading was determined to be 6 mg cm⁻² using a high precision microbalance.

Synthesis of RuO₂: RuO₂ was prepared in accordance with reported work.¹ Briefly, 2.61 g of RuCl₃·3H₂O and 1.0 mL KOH (1.0 M) were added into 100 mL distilled water and stirred for 45 min at 100 °C. Then the above solution was centrifuged for 10 min and filtered. The precipitates were collected by centrifugation and washed with water for several times, followed by drying at 70 °C. Finally, the product was annealed at 300 °C for 3 h under air atmosphere. RuO₂ ink was prepared by dispersing 20 mg of catalyst into 490 µL of water/ethanol (v/v = 1:1) and 10 µL of 5

wt% Nafion using sonication for 30 min. Then 37.5 μ L of the RuO₂ ink (containing 1.5 mg of RuO₂) was loaded onto a bare NF of 0.25 cm⁻² in geometric area (loading: 6 mg cm⁻²).

Characterizations: XRD data were acquired from a LabX XRD-6100 X-ray diffractometer with Cu K α radiation (40 kV, 30 mA) of wavelength 0.154 nm (SHIMADZU, Japan). SEM measurements were performed on a XL30 ESEM FEG scanning electron microscope at an accelerating voltage of 20 kV. TEM images were collected on a HITACHI H-8100 electron microscopy (Hitachi, Tokyo, Japan) operated at 200 kV. XPS spectra were acquired on an ESCALABMK II X-ray photoelectron spectrometer using Mg as the excitation source.

Electrochemical measurements: Electrochemical measurements were performed with a CHI 660E electrochemical analyzer (CH Instruments, Inc., Shanghai) in a standard three-electrode system. CoCH/NF was used as the working electrode, and a graphite plate and a SCE were used as the counter electrode and the reference electrode, respectively. The temperature of solution was kept at 25 °C for all the measurements via the adjustment of air condition and heating support, which ensured the variation of diffusion coefficient below 1%. The potentials reported in this work were calibrated to RHE other than especially explained, using the following equation: E (RHE) = E (SCE) + (0.242 + 0.059 pH) V.

Fig. S1. LSVcurves for CoCH/NF in 0.2, 0.5 and 1.0 M K-Ci for OER (inset: localmagnificationLSVcurves).

Fig. S2. LSV curves recorded for CoCH/NF before and after 500 cyclic voltammetryin1.0MK-CiforOER.

Fig. S3. CVs for (a) CoCHH/NF and (c) CoCH/NF in the non-faradaic capacitancecurrent range at scan rates of 20, 40, 60, 80, and 100 mV s⁻¹. Correspondingcapacitive currents at 0.48 V vs. RHE as a function of scan rates for (b) CoCHH/NFand(d)CoCH/NFin1.0MK-Ci.

Fig. S4. A plot of TOF for CoCH/NF as a function of overpotential.

Fig. S5. LSV curves of CoCH/NF in 1.0 M K-Ci under different pH values for OER.

Catalyst	j (mA cm ⁻²)	η (mV)	Electrolyte	рН	Loading	Ref.
CoCH/NF	10	434	0.2 M K-Ci	8.3	6 mg cm ⁻²	
	10	381	0.5 M K-Ci	8.3		This work
	10	332	1.0 M K-Ci	8.3		
Fe-Ci/FTO	10	560	0.2 M Ci	9.75	91.2 nmol/cm ²	2
Co-Ci/GC	9.1	~771	0.2 M K-Ci	6.7~6.8	7.5 nmol cm ⁻²	3
NiO@Ni-Ci/CC	15	387	1.0 M K-Ci	8.3	1.8 mg cm ⁻²	4
Co-Bi NA/Ti	10	420	0.1 M K-Bi	9.2	2.38 mg cm ⁻²	5
Co-Pi NA/Ti	10	450	0.1 M K-Pi	7.0	0.95 mg cm ⁻²	6
CCH@Co-Pi NA/Ti	10	460	0.1 M K-Pi	7.0	2.0 mg cm ⁻²	7
Ni-Bi film/FTO	1.0	390	0.5 M K-Bi	9.2	1.4 nmol/cm ²	8
Ni-Bi film/FTO	1.0	413	1.0 M K-Bi	9.2	10 nmol/cm ²	9
Fe-Bi/ITO	10	600	0.5 M BBS	9.2	-	10
Fe-Co ₃ O ₄ @Fe-Co-Bi/CC	10	420	0.1 M K-Bi	9.2	1.32 mg cm ⁻²	11
CoP@Co-Bi-Pi/Ti	10	410	0.1 M K-Bi	9.2	1.2 mg cm ⁻²	12
Fe-Pi-Bi/CC	10	434	0.1 M K-Bi	9.2	2.21 mg cm ⁻²	13
CoO ₂ /CoSe ₂ -Ti	10	510	1.0 M PBS	7.0	2.0 mg cm ⁻²	14
Cu-Bi/FTO	10	810	0.2 M BBS	9.2	-	15
Co-Bi/FTO	1	390	1.0 M K-Bi	9.2	-	16
Co-W/FTO	1	420	0.05M K-Bi	8.0	-	17
Co-Ni LDH/FTO	1.0	490	0.1 M K-Pi	7.0	0.17 μg cm ⁻²	18
Ni-4Gly	1.0	480	0.25 M PBS	9.0	-	19
NiO _x -Bi	1.0	650	0.5 M K-Bi	9.2	10.0 mC cm ⁻²	20

Table S1. Comparison of OER performance for CoCH/NF with other reported non-

noble-metal catalysts under benign conditions.

References

- J. C. Cruz, V. Baglio, S. Siracusano, V. Antonucci, A. S. Aricò, R. Ornelas, L. Ortiz-Frade, G. Osorio-Monreal, S. M. Durón-Torres and L. Arriaga, *Int. J. Electrochem. Sci.*, 2011, 6, 6607–6619.
- F. Li, L. Bai, H. Li, Y. Wang, F. Yu and L. Sun, Chem. Commun., 2016, 52, 5753–5756.
- 3 X. Ren, R. Ge, Y. Zhang and X. Sun, J. Am. Chem. A, 2017, 5, 7291–7294.
- 4 L. Xie, R. Zhang, L. Cui, D. Liu, S. Hao, Y. Ma, G. Du, A. M. Asiri and X. Sun, *Angew. Chem., Int. Ed.*, 2017, 56, 1064–1068.
- 5 L. Cui, D. Liu, S. Hao, F. Qu, G. Du, J. Liu, A. M. Asiri and X. Sun, *Nanoscale*, 2017, 9, 3752–3756.
- M. Ma, Y. Liu, X. Ma, R. Ge, F. Qu, Z. Liu, G. Du, A. M. Asiri, Y. Yao and X.
 Sun, Sustain. Energy Fules, 2017, 1, 1287-1291.
- D. K. Bediako, Y. Surendranath, and D. G. Nocera, J. Am. Chem. Soc., 2013, 135, 3662–3674.
- D. K. Bediako, B. Lassallekaiser, Y. Surendranath, J. Yano, V. K. Yachandra and
 D. G. Nocera, J. Am. Chem. Soc., 2012, 134, 6801–6809.
- 9 D. R. Chowdhury, L. Spiccia, S. S. Amritphale, A. Paul and A. Singh, *J. Mater. Chem. A*, 2016, 4, 3655–3660.
- G. Zhu, R. Ge, F. Qu, G. Du, A. M. Asiri, Y. Yao and X. Sun, J. Mater. Chem. A, 2017, 5, 6388–6392.
- L. Cui, F. Qu, J. Liu, G. Du, A. M. Asiri and X. Sun, *ChemSusChem*, 2017, 10, 1370–1374.
- 12 W. Wang, D. Liu, S. Hao, F. Qu, Y. Ma, G. Du, A. M. Asiri, Y. Yao and X. Sun, *Inorg. Chem.*, 2017, 56, 3131–3135.
- 13 K. Li, J. Zhang, R. Wu, Y. Yu and B. Zhang, *Adv. Sci.*, 2016, **3**, 1500426.
- 14 X. Liu, H. Zheng, Z. Sun, A. Han and P. Du, *ACS Catal.*, 2015, **5**, 1530-1538.
- A. J. Esswein, Y. Surendranath, S. Y. Reece and D. G. Nocera, *Energy Environ*. Sci., 2011, 4, 499-504.

- 16 B. Zhang, X. Wu, F. Li, F. Yu, Y. Wang and L. Sun, *Chem. Asian J.*, 2015, 10, 2228-2233.
- Y. Zhang, B. Cui, C. Zhao, H. Lin and J. Li, *Phys. Chem. Chem. Phys.*, 2013, 15, 7363–7369.
- 18 K. S. Joya, K. Takanabe and H. J. M. D. Groot. Adv. Energy Mater., 2014, 4, 1400252.
- D. Wang, G. Ghirlanda and J. P. Allen, J. Am. Chem. Soc., 2014, 136, 10198– 10201.
- A. M. Smith, L. Trotochaud, M. S. Burke and S. W. Boettcher, *Chem. Commun.*, 2015, 51, 5261–5263.