$\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}:$ A Stable Ag-P Superatom with Eight-

Electrons (N-triphos = Tris((diphenylphosphino)methyl)amine)

Xue-Tao Shen, Xue-Li Ma, Qing-Ling Ni, Meng-Xia Ma, Liu-Cheng Gui, Cheng Hou, Ruo-Bing Hou, Xiu-Jian Wang

Experiment Section

All reagents were purchased from commercial sources and used without further purification. Ligand N-triphos was prepared according to the reference (P. W. Miller and A. J. P. White, J. Organomet. Chem. 2010, 695, 1138-1145).

Synthesis of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3} \cdot \mathbf{8} \mathbf{H}_{2} \mathrm{O}$:

$30 \mathrm{mg}(0.05 \mathrm{mmol}) \mathrm{N}, \mathrm{N}, \mathrm{N}-\mathrm{tris}$ (diphenylphosphinomethyl)amine in 3.0 mL MeOH was added to the solution of $60 \mathrm{mg}(0.35 \mathrm{mmol}) \mathrm{AgNO}_{3}$ in 0.5 mL of deionized water, and the resulting reaction solution was stirred at room temperature using a magnetic stirrer. After 20 minutes, a fresh solution of $20 \mathrm{mg}(0.53 \mathrm{mmol})$ of NaBH_{4} in 6.0 mL of MeOH was added into this reaction solution. And then the resulting reaction mixture was stirred continuously for over 20 h at room temperature. After that, the solvents were removed by rotary evaporation at room temperature. The dried product was extracted by 7 mL of CHCl_{3} and then the extracted mixture was centrifuged for 1 min at $6000 \mathrm{r} / \mathrm{min}$. The dark red supernatant was filtrated and the filtration was diffused slowly by ether through the vapor phase. Dark sheet crystals were afforded in one week. Yield: $11.35 \mathrm{mg}, 10.8 \%$ based on Ag^{+}ion. Elemental analysis calcd (\%) for $\mathrm{C}_{156} \mathrm{H}_{160} \mathrm{Ag}_{15} \mathrm{Cl}_{4} \mathrm{~N}_{7} \mathrm{O}_{17} \mathrm{P}_{12}$: C 41.30, H 3.55, N 2.16; found: C 41.58, H 3.91, N 2.42 .

Note: Following the aforementioned procedure, the compound 1 can also be obtained by using $\mathrm{NaBD}_{4}, \mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{D}_{2} \mathrm{O}$ instead of $\mathrm{NaBH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{H}_{2} \mathrm{O}$, respectively.

Physical measurements

IR spectra were recorded as KBr pellets on a Perkin-Elmer FT-IR spectrometer in the range $4000-450 \mathrm{~cm}^{-1}$. Elemental analyses were performed with a Carlo ERBA 1106 analyzer. Powder X-ray diffraction (PXRD) data were collected on a Rigaku D/Max 2500 diffractometer ($\mathrm{CuK} \alpha, \lambda=$ $1.5418 \AA$). UV-vis spectra were recorded using a Cary series UV-Vis spectrometer. High resolution mass spectra were recorded using a Thermo Exactive in positive ion mode, the capillary temperature: $350^{\circ} \mathrm{C}$; the capillary voltage: 57.5 V ; the tube lens voltage: 160 V ; the skimmer voltage: 20 V . X-ray Photoelectron Spectroscopy (XPS) was carried out using a monochromatic Al $\mathrm{K} \alpha(1486.69 \mathrm{eV})$ X-ray source operated on ESCALAB 250Xi, and the spectra were calibrated using the C 1 s peak at 284.5 eV .

Crystal data and experimental details for 1 were given in Table S1. X-ray Diffraction data of complex 1 were obtained at 1W1A, Beijing Synchrotron Radiation Facility $(\lambda=0.72 \AA)$ at 107 K . All calculations were performed with Olex2 crystallographic software package. The structure was solved by the standard direct method and refined in the anisotropic approximation. The diffraction
data of $\mathbf{1}$ was not enough good since the crystal was sheet. Therefore all phenyl rings on N -triphos were not standard and had to been fixed theoretically. Counter anions $\mathrm{NO}_{3}{ }^{-}$and solvent molecules were seriously disorder and couldn't be determined directly by the structure refinement. The number of counter anion $\mathrm{NO}_{3}{ }^{-}$was determined by elemental analysis and confirmed by ESI-MS. Hydrogen atoms were generated theoretically onto the specific atoms and refined isotropically with fixed thermal factors. The final refinements had been carried out with SQUEEZE data. The crystal data has been deposited to the Cambridge Structural Database and the CCDC number: 1576513.

Table S1 Crystal data and structure refinement for 1

Empirical formula	$\mathrm{C}_{156} \mathrm{H}_{144} \mathrm{Ag}_{15} \mathrm{Cl}_{4} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{P}_{12} \cdot$ xsolvent
Crystal system	orthorhombic
Space group	$C 222_{l}$
$a(\AA)$	$18.702(4)$
$b(\AA)$	$36.975(7)$
$c(\AA)$	$28.652(6)$
$\alpha\left({ }^{\circ}\right)$	90
$\beta\left({ }^{\circ}\right)$	90
$\gamma\left({ }^{\circ}\right)$	90
Volume $\left(\AA^{3}\right)$	$19813(7)$
Z	4
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}{ }^{-3}\right)$	1.410
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.669
θ range for data collection	2.469 to 25.057
Reflections collected	30936
Independent reflections	16793
Data/restraints/parameters	$16793 / 1140 / 730$
Goodness of fit (GOF)	1.070
Final R indices [$I>2 \sigma(I)]$	0.0973
R indices (all data)	0.1132
Largest diff. peak / hole /e $\AA{ }^{-3}$	$3.463 /-3.608$

Fig. S1 IR spectra of ligand N-triphos and $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$.

Fig. S2 Positive-ion mode ESI-MS of single crystal of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ in $\mathrm{CH}_{3} \mathrm{OH}$, showing some overlapped peaks at 2120~2220.

Fig. S3 Positive-ion mode ESI-MS of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster mixed with the excess KCl in $\mathrm{CH}_{3} \mathrm{OH}$ solution, showing molecular ion peaks of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}(\mathrm{Cl})_{4}\right]^{3+}$ and $\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}(\mathrm{Cl})_{4}\right] \mathrm{Cl}\right\}^{2+}$.

Fig. S4 (a) Positive-ion mode ESI-MS of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster mixed with the excess KBr in $\mathrm{CH}_{3} \mathrm{OH}$ solution, exhibiting anion exchange behaviors. (b-c) showing a good agreement of experimental (black) and simulated (red) mass spectra of $\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\right.\right.$ triphos $\left.\left.)_{4}(\mathrm{Cl})_{3}(\mathrm{Br})\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+}, \quad\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\text { triphos })_{4}(\mathrm{Cl})_{2}(\mathrm{Br})_{2}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+}, \quad\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\right.\right.$ triphos $\left.\left.)_{4}(\mathrm{Cl})(\mathrm{Br})_{3}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+}$ and $\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}(\mathrm{Br})_{4}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+}$, respectively.

Fig. S5 (a) Positive-ion mode ESI-MS of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster mixed with the excess KNO_{3} in $\mathrm{CH}_{3} \mathrm{OH}$ solution. (b-f) showing a good agreement of experimental (black) and simulated (red) mass spectra of $\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}(\mathrm{Cl})_{4}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+},\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\right.\right.$ triphos $\left.\left.)_{4}(\mathrm{Cl})_{3}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+},\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\text { triphos })_{4}\left(\mathrm{Cl}_{2}\right)_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+},\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\right.\right.$ triphos $\left.\left.)_{4}(\mathrm{Cl})\left(\mathrm{NO}_{3}\right)_{3}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+}\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{NO}_{3}\right)_{4}\right]\left(\mathrm{NO}_{3}\right)\right\}^{2+}$, respectively.

Fig. S6 XPS spectra of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster. (a) Survey spectrum, showing all the expected elements ($\mathrm{Ag}, \mathrm{P}, \mathrm{Cl}$ and C). (b-e) Specific regions of $\mathrm{Ag} 3 \mathrm{~d}, \mathrm{Cl} 2 \mathrm{p}, \mathrm{P} 2 \mathrm{p}$ and C 1s, respectively.

Fig. S7 UV-vis spectra of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster in $\mathrm{CH}_{3} \mathrm{OH}\left(2.5 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ monitored with time, checking the time-dependent ambient stability of cluster in $\mathrm{CH}_{3} \mathrm{OH}$ in dark (a) and in natural light (b).

Fig. S8 UV-vis spectra of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster in $\mathrm{CH}_{3} \mathrm{OH}$ $\left(2.5 \times 10^{-5} \mathrm{~mol} \cdot \mathrm{~L}^{-1}\right)$ at $50^{\circ} \mathrm{C}$ in dark, monitored with time.

Fig. S9 Monitoring the time-dependent ambient stability of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ cluster as a solid. (a) Powder X-ray diffraction data; (b) UV-vis spectra, the solid-state cluster was dissolved in $\mathrm{CH}_{3} \mathrm{OH}$ for recording the UV-vis spectra. Solid-state samples were stored in natural light.

Fig. S10 the simulaton of UV-vis spectrum of 1 by TD-DFT

Fig. S11 UV-vis spectra of the as-prepared product and the crystal of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]\left(\mathrm{NO}_{3}\right)_{3}$ in CHCl_{3}.

Fig. S12 the Positive-ion mode ESI-MS spectra of nanocluster 1 by using $\left[\mathrm{BH}_{4}\right]^{-}$(red) and $\left[\mathrm{BD}_{4}\right]^{-}$ (black). (a) showing an almost identical ESI-MS spectra of $\mathbf{1}$ in methanol at 2110~2180. (b) showing an almost identical ESI-MS spectra of 1 at 1200~2200 with the excess of KCl in methanol, inset: the ESI-MS spectra of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}\left(\mathrm{Cl}_{4}\right)\right]^{3+}$ and $\left\{\left[\mathrm{Ag}_{15}(\mathrm{~N}-\right.\right.$ triphos $\left.\left.)_{4}\left(\mathrm{Cl}_{4}\right)\right] \mathrm{Cl}\right\}^{2+}$.

Computational Details

All the calculations were performed via Gaussian 16 program ${ }^{[1]}$. In order to reduce the expense of computation, the structure of $\left[\mathrm{Ag}_{15}(\mathrm{~N} \text {-triphos })_{4}(\mathrm{Cl})_{4}\right]^{3+}$ is simplified. The phenyl group was replaced by hydrogen atom. Density functional theory (DFT) calculation at the hybrid Becke, three-parameter Lee-Yang (B3LYP) level ${ }^{[2]}$ was carried out to optimize the structure of the model complex. The def2-SVP basis set ${ }^{[3]}$ was selected as a compromise of reasonable accuracy and computational effort. The UV-visible absorption spectra of the complexes were investigated using TD-DFT calculations at TPSSh $4 /$ def2-TZVP level based on the simplified model complex.

References

1. Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
2. C. Lee, W. Yang, R. G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical review B, 1988, 37(2): 785.
3. F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : Design and assessment of accuracy[J]. Physical Chemistry Chemical Physics, 2005, 7(18): 3297-3305.
4. J. Tao, J. P. Perdew,V. N. Staroverov, et al. Climbing the density functional ladder: Nonempirical meta-generalized gradient approximation designed for molecules and solids [J]. Physical Review Letters, 2003, 91(14): 146401.

Cartesian coordinates of the optimized geometry

Ag	0.00018000	-0.21704500	-0.26586100
Ag	2.12406300	-1.17716700	-1.59529000
Ag	1.72135400	1.98886100	-0.74798100
Ag	-1.23253700	2.01471200	-1.13781700
Ag	1.66870300	-2.00974400	1.09354100
Ag	0.02842600	-3.05289800	-1.24721200
Ag	0.38623200	0.77225400	-3.19571700
Ag	0.03136200	3.51507300	1.06800200
Ag	3.92931300	-0.06614800	0.41030800
Cl	4.11351200	1.89377300	-1.51808400
Cl	1.98309500	-2.67776100	3.46311700
P	1.78494300	-4.09482800	-3.14340900
P	2.46022400	0.31856800	-4.72818500
P	5.46330600	-1.49678900	-1.25192400
P	-1.22362300	2.67838300	-4.45062800
P	-0.99883800	5.39175800	-0.44161700
P	-4.78326500	2.33162000	-1.05309200
N	3.58727700	-1.90411200	-3.36721200
N	-2.58554100	3.78097500	-2.18019500
C	2.87591700	-2.93275400	-4.15882700
H	3.57308100	-3.51429200	-4.78960400
H	2.17077900	-2.43190600	-4.83897000
C	3.93376300	-0.72216100	-4.18676100
C	4.79139400	-2.47511500	-2.72058400
C	-1.91536400	4.12853600	-3.45729300
H	-1.03353800	4.74641300	-3.23407600
H	-2.57856200	4.73709800	-4.09946400
C	-2.62438100	4.95867100	-1.27895500
H	-3.29365300	4.73582700	-0.43601100
H	-3.02734000	5.84504700	-1.80321900
C	-3.96070600	3.29725800	-2.44289300
H	-3.93664900	2.59128300	-3.28611900
H	-4.62104700	4.13383500	-2.73880300
Ag	-1.91685800	-1.77529500	0.88491300
Ag	-1.76260100	0.92689600	1.69125000
Ag	1.23329600	0.90652800	1.89920100
Ag	-1.82264800	-0.81430200	-2.23442600
Ag	-0.43464500	-1.23474500	3.30440900
Ag	-3.94003600	0.05144300	-0.30135900

-2.43992100	3.27921300	2.24034000
-4.12958600	-1.67707300	-2.52729400
-1.84172900	-4.78960500	-0.79844900
-1.89169300	-3.37698100	3.81588200
-5.33187000	-1.78938200	0.88788200
0.36995300	0.20512500	5.30174400
1.69223200	4.25260100	2.91427900
4.65563600	0.36377800	2.81883300
-3.33403300	-3.74742000	1.39603600
2.38847500	1.69187800	3.93115700
-2.69053200	-4.97130000	0.87178700
-3.40753500	-5.81204700	0.82452400
-1.88641800	-5.27538600	1.55836800
-3.46022000	-3.81806800	2.87077100
-4.65498600	-3.53773900	0.75740200
1.41352000	1.74924600	5.04268400
0.67902200	2.53858600	4.82382000
1.90871800	2.01791700	5.99519800
2.92884300	3.03986600	3.65555300
3.71963000	2.95558400	2.89511100
3.38698700	3.48594400	4.55870600
3.47066000	0.72935700	4.23339000
3.02228200	-0.25195500	4.45388300
4.05925900	1.04679200	5.11521000
-5.40002200	-4.26229300	1.13492200
-4.55541400	-3.68996300	-0.32728200
4.52958500	-0.03089000	-3.57284200
4.53211700	-1.00200600	-5.07400100
5.59943200	-2.64451600	-3.45639700
4.52642100	-3.45696500	-2.30236400
-4.19763600	-3.07115600	3.19830200
-3.83942000	-4.80474100	3.19520300
6.37863700	-2.48424000	-0.79882600
6.40396200	-0.64176100	-1.88079800
5.33836500	-0.71760500	3.42801800
5.65553000	1.35505800	3.00147300
1.12992300	4.84843400	4.07373900
2.61490600	5.28547400	2.60630600
-0.54327500	0.77045300	6.22916600
1.15645900	-0.53006900	6.22499800
-2.39876500	-3.59361100	5.12540200
-5.80081200	-1.74515800	2.22902600
-6.58138400	-2.02363300	0.25909900
-4.57386900	3.71473400	

H	-6.07944300	2.27514200	-1.62825200
H	-5.03490300	3.33210000	-0.08165400
H	-2.93499900	-4.70557300	-1.69676700
H	-1.52238400	-6.15981100	-0.99249500
H	1.34292200	-4.90639800	-4.22496700
H	2.74751600	-5.01148200	-2.63833800
H	2.17458900	-0.22240500	-6.01093000
H	3.17583700	1.46148000	-5.16411000
H	-2.40597400	2.15541800	-5.04168800
H	-0.80580900	3.44225700	-5.57621400
H	-0.31021400	6.09114300	-1.47034900
H	-1.46475300	6.53042000	0.26605100

